Functions

Class 6

2.1 Functions

- this section (re)introduces the mathematical concept of a function
- if we have two sets A and B (which could be equal)
- if every element of A is associated with exactly one element 0 f B
- then we have a function from A to B
- another word for a function is a mapping
- we write

$$
f: A \rightarrow B
$$

- note that the right arrow symbol is the same as for logical implication, but this is in a different context

Formula Notation

- a typical way of denoting a function is with a formula

$$
f(x)=x^{2}
$$

- this is a mapping from integers to integers

$$
f: Z \rightarrow Z
$$

- or from reals to reals

$$
f: \mathrm{R} \rightarrow \mathrm{R}
$$

- or from naturals to naturals

$$
f: N \rightarrow N
$$

- the Caesar cipher is a mapping from characters to characters
- ASCII is a mapping from a particular character set to naturals, e.g., $A \rightarrow 65$

Function Digraphs

- functions are sometimes depicted as digraphs
character code

\vdots

Flavors

- if you read the definition of function very carefully
- you notice that every element of A must map to exactly one element of B
- but not every element of B must be mapped to
- and more than one element of A may map to one element of B
- what function is this?

Flavors

- if you read the definition of function very carefully
- you notice that every element of A must map to exactly one element of B
- but not every element of B must be mapped to
- and more than one element of A may map to one element of B
- what function is this?

integer division by 2: $f(n)=n / 2$

Another Example

- what function is this?

Another Example

- what function is this?

$$
f(n)=n^{2}
$$

Domain, Codomain, Range

- given a function $f: A \rightarrow B$
- the set A is the domain of the function f
- the set B is the codomain of f
- the set of B's elements that have arrows pointing to them is the range of f
- for $f: \mathrm{N} \rightarrow \mathrm{N}$ defined by $f(n)=n / 2$ fill in the following:

> domain:
> codomain:
> range:

Domain, Codomain, Range

- given a function $f: A \rightarrow B$
- the set A is the domain of the function f
- the set B is the codomain of f
- the set of B's elements that have arrows pointing to them is the range of f
- for $f: \mathrm{N} \rightarrow \mathrm{N}$ defined by $f(n)=n / 2$ fill in the following:

domain:	N
codomain:	N
range:	N

Domain, Codomain, Range

- given a function $f: A \rightarrow B$
- the set A is the domain of the function f
- the set B is the codomain of f
- the set of B 's elements that have arrows pointing to them is the range of f
- for $f: \mathrm{N} \rightarrow \mathrm{N}$ defined by $f(n)=n^{2}$ fill in the following: domain: codomain: range:

Domain, Codomain, Range

- given a function $f: A \rightarrow B$
- the set A is the domain of the function f
- the set B is the codomain of f
- the set of B 's elements that have arrows pointing to them is the range of f
- for $f: \mathrm{N} \rightarrow \mathrm{N}$ defined by $f(n)=n^{2}$ fill in the following:

$$
\begin{array}{ll}
\text { domain: } & N \\
\text { codomain: } & N \\
\text { range: } & \{0,1,4,9,16, \ldots\}
\end{array}
$$

Preimage and Image

- two terms closely related to domain and range
- the domain is all possible inputs to the function, with range being the entire set of corresponding outputs
- a preimage is an arbitrary subset of the domain
- the image is the set of outputs that correspond to whatever preimage set was supplied

Integer Functions

- some functions are extremely important in CS
- because integers and floating point numbers are so different in programming, functions that convert between them are important
- the floor function has floating point input and returns the closest integer less than or equal to the input
- floor: $\mathrm{R} \rightarrow \mathrm{Z}$
- denoted floor (x) or $\lfloor x\rfloor$
(LATEX: \$\text\{floor\}(x)\$ or \$\lfloor x \rfloor\$

Ceiling

- the ceiling (ceil) function is similar: returns the closest integer greater than or equal to the input

x	floor (x)	$($ ceil $) x$
-2	-2	-2
-1.5	-2	-1
-1.0	-1	-1
-0.5	-1	0
0	0	0
0.5	0	1
1	1	1
1.5	1	2

Quotient and Remainder

- you are familiar with integer division
- if b is not zero, then $a \div b$ gives a quotient and a remainder
- for example, $7 \div 3$ is 2 with a remainder of 1 $6 \div 3$ is 2 with a remainder of 0
- we use the / symbol for the binary function that returns the quotient
- we use mod for the function that returns the remainder

a	b	a / b	$a \bmod b$
6	3	2	0
7	3	2	1

($\mathrm{A} \mathrm{T}_{\mathrm{E}} \mathrm{X}: \backslash$ bmod)

AATEXDelimiters

the formula for mod is:

$$
a \bmod b=a-b\left\lfloor\frac{a}{b}\right\rfloor
$$

notice how the floor delimiters are tall enough to reach the top and bottom of the fraction
if we do this:

$$
a \bmod b=a-b\left\lfloor\frac{a}{b}\right\rfloor
$$

$$
a \bmod b = a - b\lfloor \(\backslash\) frac\{a\}\{b\}\rfloor
$$ it doesn't look right

we have to do this:

$$
a \bmod b = a - b\left\lfloor\frac\{a\}\{b\}
\right } \backslash \text { rfloor
$$ }

Logarithms

- logarithms are often a source of confusion
- but they are so important in CS that it's essential to get a feel for them
- in CS we deal almost exclusively with base-2 logarithms
- the simplest way to think of a logarithm is

Logarithm

How many times can you divide a number n by 2
(using integer division)
before the result is 1 or 0 ?

- the answer to this question is the base-2 logarithm of n

Powers of 2

here are all the powers of 2 from 0 to 10

$$
\begin{aligned}
2^{0} & =1 \\
2^{1} & =2 \\
2^{2} & =4 \\
2^{3} & =8 \\
2^{4} & =16 \\
2^{5} & =32 \\
2^{6} & =64 \\
2^{7} & =128 \\
2^{8} & =256 \\
2^{9} & =512 \\
2^{10} & =1024
\end{aligned}
$$

Division

how many times can you divide 128 by 2 until you get 2 ?

Division

how many times can you divide 128 by 2 until you get 2?
7
so 7 is the base- 2 logarithm of 128

Powers of 2

- here are the higher powers of 2 , and their relation to powers of 10
- with these, you can interpolate
$\begin{array}{cllll}\text { kibi } & 2^{10} & (1,024) & \approx \text { kilo } & 10^{3} \\ \text { mebi } & 2^{20} & (1,048,576) & \approx \text { mega } & 10^{6}\end{array}$ (one thousand) $)$

Example

about how much is 2^{37} ?

Example

about how much is 2^{37} ?

$$
\begin{aligned}
2^{37} & =2^{30} \times 2^{7} \\
& \approx 10^{9} \times 2^{7} \\
& \approx 1 \text { billion } \times 128 \\
& \approx 128,000,000,000
\end{aligned}
$$

what is the approximate base-2 logarithm of $128,123,546,789$?

Example

about how much is 2^{37} ?

$$
\begin{aligned}
2^{37} & =2^{30} \times 2^{7} \\
& \approx 10^{9} \times 2^{7} \\
& \approx 1 \text { billion } \times 128 \\
& \approx 128,000,000,000
\end{aligned}
$$

what is the approximate base-2 logarithm of $128,123,546,789$?
about 37

Logarithm Notation

$\log n$ base-10 logarithm
$\log _{10} n$ also base-10 logarithm when we wish to emphasize
In n natural logarithm
$\lg n$ base-2 logarithm
to typeset \log in $\mathrm{A} T_{E} \mathrm{X}$ use $\backslash \log$

