Functions

Class 6

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

2.1 Functions

- this section (re)introduces the mathematical concept of a function
- if we have two sets A and B (which could be equal)
- if every element of A is associated with exactly one element Of B
- then we have a function from A to B
- another word for a function is a mapping
- we write

$$f: A \to B$$

• note that the right arrow symbol is the same as for logical implication, but this is in a different context

Formula Notation

• a typical way of denoting a function is with a formula

$$f(x) = x^2$$

• this is a mapping from integers to integers

$$f: Z \rightarrow Z$$

or from reals to reals

$$f: \mathsf{R} \to \mathsf{R}$$

• or from naturals to naturals

$$f: \mathbb{N} \to \mathbb{N}$$

- the Caesar cipher is a mapping from characters to characters
- ASCII is a mapping from a particular character set to naturals, e.g., A \rightarrow 65

Function Digraphs

• functions are sometimes depicted as digraphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Flavors

- if you read the definition of function very carefully
- you notice that every element of A must map to exactly one element of B
- but not every element of *B* must be mapped to
- and more than one element of A may map to one element of B
- what function is this?

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Flavors

- if you read the definition of function very carefully
- you notice that every element of A must map to exactly one element of B
- but not every element of *B* must be mapped to
- and more than one element of A may map to one element of B
- what function is this?

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

integer division by 2: f(n) = n/2

Another Example

• what function is this?

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Another Example

• what function is this?

$$f(n)=n^2$$

- given a function $f : A \rightarrow B$
- the set *A* is the domain of the function *f*
- the set *B* is the codomain of *f*
- the set of *B*'s elements that have arrows pointing to them is the range of *f*
- for $f : \mathbb{N} \to \mathbb{N}$ defined by f(n) = n/2 fill in the following:

domain: codomain: range:

- given a function $f : A \rightarrow B$
- the set *A* is the domain of the function *f*
- the set *B* is the codomain of *f*
- the set of *B*'s elements that have arrows pointing to them is the range of *f*
- for $f : \mathbb{N} \to \mathbb{N}$ defined by f(n) = n/2 fill in the following:

domain:	Ν
codomain:	Ν
range:	Ν

- given a function $f : A \rightarrow B$
- the set *A* is the domain of the function *f*
- the set *B* is the codomain of *f*
- the set of *B*'s elements that have arrows pointing to them is the range of *f*

• for $f : \mathbb{N} \to \mathbb{N}$ defined by $f(n) = n^2$ fill in the following:

domain: codomain: range:

- given a function $f : A \rightarrow B$
- the set *A* is the domain of the function *f*
- the set *B* is the codomain of *f*
- the set of *B*'s elements that have arrows pointing to them is the range of *f*
- for $f : \mathbb{N} \to \mathbb{N}$ defined by $f(n) = n^2$ fill in the following:

domain:	Ν
codomain:	Ν
range:	$\{0, 1, 4, 9, 16, \dots\}$

Preimage and Image

- two terms closely related to domain and range
- the domain is all possible inputs to the function, with range being the entire set of corresponding outputs
- a preimage is an arbitrary subset of the domain
- the image is the set of outputs that correspond to whatever preimage set was supplied

Integer Functions

- some functions are extremely important in CS
- because integers and floating point numbers are so different in programming, functions that convert between them are important
- the floor function has floating point input and returns the closest integer less than or equal to the input
- floor : $R \rightarrow Z$
- denoted floor(x) or [x]
 (\alphaTeX: \$\text{floor}(x)\$ or \$\lfloor x \rfloor\$

Ceiling

• the ceiling (ceil) function is similar: returns the closest integer greater than or equal to the input

x	floor(x)	(ceil)x
-2	-2	-2
-1.5	-2	-1
-1.0	-1	-1
-0.5	-1	0
0	0	0
0.5	0	1
1	1	1
1.5	1	2

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Quotient and Remainder

- you are familiar with integer division
- if b is not zero, then $a \div b$ gives a quotient and a remainder
- for example, 7 ÷ 3 is 2 with a remainder of 1
 6 ÷ 3 is 2 with a remainder of 0
- we use the / symbol for the binary function that returns the quotient
- we use mod for the function that returns the remainder

а	Ь	a/b	a mod b
6	3	2	0
7	3	2	1

 $(PTEX: \bmod)$

LATEXDelimiters

the formula for mod is:

$$a \mod b = a - b \left\lfloor \frac{a}{b} \right\rfloor$$

notice how the floor delimiters are tall enough to reach the top and bottom of the fraction if we do this:

$$a \mod b = a - b \lfloor \frac{a}{b} \rfloor$$

\[a \bmod b = a - b\lfloor\frac{a}{b}\rfloor \]
it doesn't look right

```
we have to do this:
\[ a \bmod b = a - b\left\lfloor\frac{a}{b}
\right\rfloor \]
```

Logarithms

- logarithms are often a source of confusion
- but they are so important in CS that it's essential to get a feel for them
- in CS we deal almost exclusively with base-2 logarithms
- the simplest way to think of a logarithm is

Logarithm

How many times can you divide a number n by 2 (using integer division) before the result is 1 or 0?

• the answer to this question is the base-2 logarithm of *n*

Powers of 2

here are all the powers of 2 from 0 to 10

$$2^{0} = 1$$

$$2^{1} = 2$$

$$2^{2} = 4$$

$$2^{3} = 8$$

$$2^{4} = 16$$

$$2^{5} = 32$$

$$2^{6} = 64$$

$$2^{7} = 128$$

$$2^{8} = 256$$

$$2^{9} = 512$$

$$2^{10} = 1024$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

how many times can you divide 128 by 2 until you get 2?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

how many times can you divide 128 by 2 until you get 2?

7

so 7 is the base-2 logarithm of 128

Powers of 2

- here are the higher powers of 2, and their relation to powers of 10
- with these, you can interpolate

2 ¹⁰	(1,024) \approx kilo	10 ³	(one thousand)
2 ²⁰	(1,048,576)pprox mega	10 ⁶	(one million)
2 ³⁰	pprox giga	10 ⁹	(one billion)
2 ⁴⁰	pprox tera	10^{12}	(one trillion)
2 ⁵⁰	pprox peta	10^{15}	(one quadrillion)
2 ⁶⁰	pprox exa	10^{18}	(one quintillion)
2 ⁷⁰	pprox zeta	10^{21}	(one sextillion)
2 ⁸⁰	pprox yotta	10 ²⁴	(one septillion)
	2 ¹⁰ 2 ²⁰ 2 ³⁰ 2 ⁴⁰ 2 ⁵⁰ 2 ⁶⁰ 2 ⁷⁰ 2 ⁸⁰	$\begin{array}{cccc} 2^{10} & (1,024) &\approx \mbox{ kilo} \\ 2^{20} & (1,048,576) \approx \mbox{ mega} \\ 2^{30} & \approx \mbox{ giga} \\ 2^{40} & \approx \mbox{ tera} \\ 2^{50} & \approx \mbox{ peta} \\ 2^{60} & \approx \mbox{ exa} \\ 2^{70} & \approx \mbox{ zeta} \\ 2^{80} & \approx \mbox{ yotta} \end{array}$	$\begin{array}{cccccc} 2^{10} & (1,024) &\approx \mbox{ kilo } & 10^3 \\ 2^{20} & (1,048,576) \approx \mbox{ mega } & 10^6 \\ 2^{30} & \approx \mbox{ giga } & 10^9 \\ 2^{40} & \approx \mbox{ tera } & 10^{12} \\ 2^{50} & \approx \mbox{ peta } & 10^{15} \\ 2^{60} & \approx \mbox{ exa } & 10^{18} \\ 2^{70} & \approx \mbox{ zeta } & 10^{21} \\ 2^{80} & \approx \mbox{ yotta } & 10^{24} \end{array}$

Example

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

about how much is 2^{37} ?

Example

about how much is 2^{37} ?

$$\begin{array}{l} 2^{37} = 2^{30} \times 2^{7} \\ \approx 10^{9} \times 2^{7} \\ \approx 1 \text{ billion} \times 128 \\ \approx 128,000,000,000 \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

what is the approximate base-2 logarithm of 128,123,546,789?

Example

about how much is 2^{37} ?

$$\begin{array}{l} 2^{37} = 2^{30} \times 2^{7} \\ \approx 10^{9} \times 2^{7} \\ \approx 1 \text{ billion} \times 128 \\ \approx 128,000,000,000 \end{array}$$

what is the approximate base-2 logarithm of 128,123,546,789? about 37

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Logarithm Notation

 $\log n$ base-10 logarithm $\log_{10} n$ also base-10 logarithm when we wish to emphasize $\ln n$ natural logarithm $\lg n$ base-2 logarithm

to typeset log in $\[Mathbb{E}X\]$ use \log