Function Compositions

Class 8



2.2 Composition of Functions

this section introduces the concept of function composition

let g : A — B be a function
let f : B — C be a different function

then f o g is a composition, a new function
fog:A—C

(fog)(x) =rf(g(x))
® composition is associative but not commutative
(IATEX: (f\circ g) (x) = £(g(x)))



Example

® let h(x) =2x+3 and g(x) = 3x +2
e find (ho g)(x)

(hog)(x) = hg(x))
= h(3x+2)
=2(33x+2)+3
=6x+4+3
=06x+7



Connection to Programming

everything we do in this course has a direct bearing on how
programs work

discrete math is the basis of computer science, just like
calculus is the basis of physics

suppose we have a binary tree and we wish to know the
minimum possible depth of the tree, given the number of
vertices

as shown in the table on page 107, there is a function that
maps the number of vertices to the minimum depth



Minimum Depth

vertices min depth
0 7 0
1 1
2 7 2
3 / 3
4 4

® the minimum depth function is a combination, or composition,
of the floor function and the base-2 log function

® since floor and log are built into every programming language,
we don't have to write our own depth function from scratch

® we can simply compose the desired function from existing
pieces



Minimum Depth

® mathematically:

min_depth(n) = (floor o Ig)(n)
= floor(lg(n))

o in C4++:

unsigned min_depth(unsigned vertices)

{

return static_cast<unsigned>(floor(log2(vertices)));

}



List Functions

e four useful functions when dealing with lists are

seq return a sequence from 0 to the argument

dist distribute the first, singleton argument across the
second, list argument, to generate a new list of
tuples

pairs return a list of pairs of corresponding elements of
the two list arguments

map similar concept to dist, but applies a function to
each list element

e all four are built into many modern languages



seq: Generate a Sequence

Python: for i in range(4): (gives 0, 1, 2, 3)
BASH: $ seq 4 (gives 1, 2, 3, 4)
this course: seq(4) = (0,1,2,3,4)

it's very easy to be confused by whether the list starts at 0 or 1

and whether the end is inclusive or exclusive



dist: Distribute an Element Over a List

in Python, this is list comprehension

[('a', x) for x in [1, 2, 3]1] gives

[("a', 1), (ta', 2), (ra', 3)]

BASH: $ echo a{1,2,3} gives al a2 a3

this course: dist(a, (1,2,3)) = ((a,1),(a,2), (a, 3))



pairs: Create Pairs From Two Lists

Python zip: list(zip([1, 2, 31,['a', 'b', 'c']))
gives [(1, 'a'), (2, 'b"), (3, 'c")]

BASH: $ paste numbers letters

(assuming appropriate file contents)

this course: pairs((1,2,3), (a, b, c)) = ((1, a),(2, b), (3, ¢))

the lists must be the same length, otherwise pairs is undefined
in Python extra elements in one list are ignored
in BASH extra elements are paired with the empty string



map: Apply a Function to a List

® Python: list(map(lambda x : x**2, [0, 1, 2, 3]))
gives [0, 1, 4, 9]

® this course: let L = (0,1,2,3) and f(n) = n?
then map(f, L) gives us (0,1,4,8)



2.3 Function Characteristics

® there are two characteristics that some functions have that are
extremely important

® 3 function is injective, or 1-to-1, if no two elements of the
domain map to the same element of the range

domain codomain

X
b

/e
d



Surjection

® a function is surjective, or “onto”, if the codomain and range
are the same set

domain codomain




Bijection

some functions are injections but not surjections (give an
example)

some are surjections but not injections (give an example)

some functions are neither injections nor surjections (give an
example)

but some functions are both injections and surjections
these are called bijections, or “1-to-1 and onto”
no two arrows point to the same element of the codomain

every element of the codomain is pointed to by some arrow



Inverses

bijections are so important because they are unique in being
invertible

a bijective function has an inverse function (which is also, by
definition, a bijection

if f is a function, we denote its inverse by f~!
(IATEX: $£-~{-11}$)

for example, let f be the function f(n) = n+ 1 which maps
each odd integer to an even integer

then f~1(n) = n — 1 is the inverse of f which maps each even
integer to an odd integer (in the same pairing as the original)

note that f~(f(n)) = n and f(f~%(n)) = n for any bijection f



The Pigeonhole Principle

® at the top of page 118 is a topic that is incredibly important
even though it seems so obvious

The Pigeonhole Principle

If nitems are put uniquely into m containers, and if n > m, then at
least one container will have at least two items.

® your text lists some examples at the bottom of page 118, but
several of these are worded so sloppily as to be incorrect

® your text incorrectly states “if a six-sided die is tossed seven
times, one side will come up twice”

® the correct statement is: “if a six-sided die is tossed seven
times, at least one side will come up at least twice”



