
Function Compositions

Class 8

2.2 Composition of Functions

• this section introduces the concept of function composition

• let g : A→ B be a function
• let f : B → C be a different function
• then f ◦ g is a composition, a new function
• f ◦ g : A→ C

(f ◦ g)(x) = f (g(x))

• composition is associative but not commutative
(LATEX: (f\circ g)(x) = f(g(x)))

Example

• let h(x) = 2x + 3 and g(x) = 3x + 2
• find (h ◦ g)(x)

(h ◦ g)(x) = h(g(x))

= h(3x + 2)
= 2(3x + 2) + 3
= 6x + 4+ 3
= 6x + 7

Connection to Programming

• everything we do in this course has a direct bearing on how
programs work
• discrete math is the basis of computer science, just like

calculus is the basis of physics

• suppose we have a binary tree and we wish to know the
minimum possible depth of the tree, given the number of
vertices
• as shown in the table on page 107, there is a function that

maps the number of vertices to the minimum depth

Minimum Depth

vertices min depth
0
1
2
3
4

...

0
1
2
3
4

• the minimum depth function is a combination, or composition,
of the floor function and the base-2 log function
• since floor and log are built into every programming language,

we don’t have to write our own depth function from scratch
• we can simply compose the desired function from existing

pieces

Minimum Depth

• mathematically:

min_depth(n) = (floor ◦ lg)(n)
= floor(lg(n))

• in C++:
unsigned min_depth(unsigned vertices)
{

return static_cast<unsigned>(floor(log2(vertices)));
}

List Functions

• four useful functions when dealing with lists are
seq return a sequence from 0 to the argument
dist distribute the first, singleton argument across the

second, list argument, to generate a new list of
tuples

pairs return a list of pairs of corresponding elements of
the two list arguments

map similar concept to dist, but applies a function to
each list element

• all four are built into many modern languages

seq: Generate a Sequence

• Python: for i in range(4): (gives 0, 1, 2, 3)
• BASH: $ seq 4 (gives 1, 2, 3, 4)
• this course: seq(4) = 〈0, 1, 2, 3, 4〉

• it’s very easy to be confused by whether the list starts at 0 or 1
• and whether the end is inclusive or exclusive

dist: Distribute an Element Over a List

• in Python, this is list comprehension
• [('a', x) for x in [1, 2, 3]] gives
[('a', 1), ('a', 2), ('a', 3)]
• BASH: $ echo a{1,2,3} gives a1 a2 a3
• this course: dist(a, 〈1, 2, 3〉) = 〈(a, 1), (a, 2), (a, 3)〉

pairs: Create Pairs From Two Lists

• Python zip: list(zip([1, 2, 3],['a', 'b', 'c']))
gives [(1, 'a'), (2, 'b'), (3, 'c')]
• BASH: $ paste numbers letters

(assuming appropriate file contents)
• this course: pairs(〈1, 2, 3〉, 〈a, b, c〉) = 〈(1, a), (2, b), (3, c)〉

• the lists must be the same length, otherwise pairs is undefined
• in Python extra elements in one list are ignored
• in BASH extra elements are paired with the empty string

map: Apply a Function to a List

• Python: list(map(lambda x : x**2, [0, 1, 2, 3]))
gives [0, 1, 4, 9]
• this course: let L = 〈0, 1, 2, 3〉 and f (n) = n2

then map(f , L) gives us 〈0, 1, 4, 8〉

2.3 Function Characteristics

• there are two characteristics that some functions have that are
extremely important
• a function is injective, or 1-to-1, if no two elements of the

domain map to the same element of the range

domain codomain

a

b

c

d
e

Surjection

• a function is surjective, or “onto”, if the codomain and range
are the same set

domain codomain

a

b
c

e

f

Xg
h
X

Bijection

• some functions are injections but not surjections (give an
example)
• some are surjections but not injections (give an example)
• some functions are neither injections nor surjections (give an

example)

• but some functions are both injections and surjections
• these are called bijections, or “1-to-1 and onto”
• no two arrows point to the same element of the codomain
• every element of the codomain is pointed to by some arrow

Inverses

• bijections are so important because they are unique in being
invertible
• a bijective function has an inverse function (which is also, by

definition, a bijection

• if f is a function, we denote its inverse by f −1

(LATEX: f^{-1})

• for example, let f be the function f (n) = n + 1 which maps
each odd integer to an even integer
• then f −1(n) = n − 1 is the inverse of f which maps each even

integer to an odd integer (in the same pairing as the original)

• note that f −1(f (n)) = n and f (f −1(n)) = n for any bijection f

The Pigeonhole Principle

• at the top of page 118 is a topic that is incredibly important
even though it seems so obvious

The Pigeonhole Principle

If n items are put uniquely into m containers, and if n > m, then at
least one container will have at least two items.

• your text lists some examples at the bottom of page 118, but
several of these are worded so sloppily as to be incorrect

• your text incorrectly states “if a six-sided die is tossed seven
times, one side will come up twice”
• the correct statement is: “if a six-sided die is tossed seven

times, at least one side will come up at least twice”

