Function Compositions

Class 8

2.2 Composition of Functions

- this section introduces the concept of function composition
- let $g: A \rightarrow B$ be a function
- let $f: B \rightarrow C$ be a different function
- then $f \circ g$ is a composition, a new function
- $f \circ g: A \rightarrow C$

$$
(f \circ g)(x)=f(g(x))
$$

- composition is associative but not commutative
$\left({ }^{A} T_{E} \mathrm{X}:(f \backslash \operatorname{circ} g)(x)=f(g(x))\right)$

Example

- let $h(x)=2 x+3$ and $g(x)=3 x+2$
- find $(h \circ g)(x)$

$$
\begin{aligned}
(h \circ g)(x) & =h(g(x)) \\
& =h(3 x+2) \\
& =2(3 x+2)+3 \\
& =6 x+4+3 \\
& =6 x+7
\end{aligned}
$$

Connection to Programming

- everything we do in this course has a direct bearing on how programs work
- discrete math is the basis of computer science, just like calculus is the basis of physics
- suppose we have a binary tree and we wish to know the minimum possible depth of the tree, given the number of vertices
- as shown in the table on page 107, there is a function that maps the number of vertices to the minimum depth

Minimum Depth

- the minimum depth function is a combination, or composition, of the floor function and the base-2 log function
- since floor and log are built into every programming language, we don't have to write our own depth function from scratch
- we can simply compose the desired function from existing pieces

Minimum Depth

- mathematically:

$$
\begin{aligned}
\min _ \text {depth }(n) & =(\text { floor } \circ \lg)(n) \\
& =\text { floor }(\lg (n))
\end{aligned}
$$

- in C++:
unsigned min_depth(unsigned vertices)
\{
return static_cast<unsigned>(floor(log2(vertices))); \}

List Functions

- four useful functions when dealing with lists are
seq return a sequence from 0 to the argument dist distribute the first, singleton argument across the second, list argument, to generate a new list of tuples
pairs return a list of pairs of corresponding elements of the two list arguments
map similar concept to dist, but applies a function to each list element
- all four are built into many modern languages

seq: Generate a Sequence

- Python: for i in range(4): (gives $0,1,2,3$)
- BASH: \$ seq 4 (gives $1,2,3,4$)
- this course: $\operatorname{seq}(4)=\langle 0,1,2,3,4\rangle$
- it's very easy to be confused by whether the list starts at 0 or 1
- and whether the end is inclusive or exclusive

dist: Distribute an Element Over a List

- in Python, this is list comprehension
- [('a', x) for x in [1, 2, 3]] gives [('a', 1), ('a', 2), ('a', 3)]
- BASH: \$ echo a\{1,2,3\} gives a1 a2 a3
- this course: $\operatorname{dist}(a,\langle 1,2,3\rangle)=\langle(a, 1),(a, 2),(a, 3)\rangle$

pairs: Create Pairs From Two Lists

- Python zip: list(zip([1, 2, 3],['a', 'b', 'c'])) gives [(1, 'a'), (2, 'b'), (3, 'c')]
- BASH: \$ paste numbers letters (assuming appropriate file contents)
- this course: $\operatorname{pairs}(\langle 1,2,3\rangle,\langle a, b, c\rangle)=\langle(1, a),(2, b),(3, c)\rangle$
- the lists must be the same length, otherwise pairs is undefined
- in Python extra elements in one list are ignored
- in BASH extra elements are paired with the empty string

map: Apply a Function to a List

- Python: list(map(lambda x : x**2, [0, 1, 2, 3])) gives [0, 1, 4, 9]
- this course: let $L=\langle 0,1,2,3\rangle$ and $f(n)=n^{2}$ then $\operatorname{map}(f, L)$ gives us $\langle 0,1,4,8\rangle$

2.3 Function Characteristics

- there are two characteristics that some functions have that are extremely important
- a function is injective, or 1-to-1, if no two elements of the domain map to the same element of the range
domain codomain

Surjection

- a function is surjective, or "onto", if the codomain and range are the same set
domain codomain

Bijection

- some functions are injections but not surjections (give an example)
- some are surjections but not injections (give an example)
- some functions are neither injections nor surjections (give an example)
- but some functions are both injections and surjections
- these are called bijections, or "1-to-1 and onto"
- no two arrows point to the same element of the codomain
- every element of the codomain is pointed to by some arrow

Inverses

- bijections are so important because they are unique in being invertible
- a bijective function has an inverse function (which is also, by definition, a bijection
- if f is a function, we denote its inverse by f^{-1} (ATEX: $\$ \mathrm{f}^{\wedge}\{-1\} \$$)
- for example, let f be the function $f(n)=n+1$ which maps each odd integer to an even integer
- then $f^{-1}(n)=n-1$ is the inverse of f which maps each even integer to an odd integer (in the same pairing as the original)
- note that $f^{-1}(f(n))=n$ and $f\left(f^{-1}(n)\right)=n$ for any bijection f

The Pigeonhole Principle

- at the top of page 118 is a topic that is incredibly important even though it seems so obvious

The Pigeonhole Principle
If n items are put uniquely into m containers, and if $n>m$, then at least one container will have at least two items.

- your text lists some examples at the bottom of page 118, but several of these are worded so sloppily as to be incorrect
- your text incorrectly states "if a six-sided die is tossed seven times, one side will come up twice"
- the correct statement is: "if a six-sided die is tossed seven times, at least one side will come up at least twice"

