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2.4 Countability

• let A and B be sets
• if there is a bijection from A to B , then clearly |A| = |B|
• i.e., A and B have the same cardinality

• if there is an injection from A to B , then |A| ≤ |B|

• this leads directly to an interesting fact
• is there a bijection from the natural numbers to the odd

natural numbers?
• yes: f (n) = 2n + 1
• therefore, |N| = |Odd|
• there are exactly the same number of natural numbers as there

are odd natural numbers



Countability

Countable Set
A set is countable if it is finite or if there is a bijection from it to
the natural numbers.

• if there is such a bijection, the set is countably infinite
• the alternative is that the set is uncountable



Countability

• prove that the Cartesian product N× N is countable
• to do so, we must find a bijection N× N→ N

• a bijection is not obvious, but one was provided by Georg
Cantor



Cantor

• Russian-born German
• 1845 – 1918
• created set theory
• defined infinity and countability
• he proved that infinity is not

absolute — that there are infinities
beyond infinity

• he was a devout religious Christian
• but was viciously and repeatedly

attacked by theologians who
believed God is infinite and nothing
can be more infinite, including
numbers



Cantor’s Pairing

N× N is a set of tuples:

{(0, 0), (1, 0), (0, 1), . . . ,
(2, 0), (1, 1), (0, 2), . . . ,
(3, 0), (2, 1), (1, 2), (0, 3), . . . }

Cantor made up a table with three
columns: tuple, sum of entries, and
position, sorted by sum ascending, then
by first tuple element descending

tuple sum position
(0, 0) 0 0
(1, 0) 1 1
(0, 1) 1 2
(2, 0) 2 3
(1, 1) 2 4
(0, 2) 2 5
(3, 0) 3 6
(2, 1) 3 7
(1, 2) 3 8
(0, 3) 3 9
(4, 0) 4 10
(3, 1) 4 11
(2, 2) 4 12
(1, 3) 4 13
(0, 4) 4 14



Cantor’s Pairing

• Cantor’s pairing provides a unique position value for each tuple
• the exact formula for tuple (x , y) is

f (x , y) =
(x + y)2 + 3y + x

2

• this is a bijection: 1-to-1 and onto
• each tuple of N× N is mapped to exactly one element of N
• and each natural number corresponds to one tuple
• therefore N× N is countable, and countably infinite

• note that Hein’s position value is not exactly the same as
Cantor’s
• Hein orders the table by sum ascending, then by first element

ascending instead of Cantor’s descending



Countable Rationals
• the rational numbers are countable by the following argument

(note that a rational number is always in lowest terms, so we
don’t have duplicates)

• the rationals can be partitioned into (i.e., are the union of) the
positive rationals Q+, the negative rationals Q−, and zero
• since every positive rational is equivalent to a tuple in N× N,

we know that the positive rationals are countably infinite
• by the same argument, every negative rational is equivalent to

a tuple in N× N, and so the negative rationals are also
countably infinite
• finally, the value zero is finite (and of size 1)
• each constituent of the partition is itself countable
• Cantor proved that the union of countable sets is countable
• therefore the rationals are countable



Uncountable Reals

• Cantor proved the real numbers are not countable
• the technique he used is called diagonalization

• consider just the real numbers between 0 and 1 and assume
they are countable
• then they can be written in some order (position):

r1 = 0.d11d12d13 . . .

r2 = 0.d21d22d33 . . .

r3 = 0.d31d32d33 . . .

...



Uncountable Reals
• for example, let

r1 = 0.23794102 . . .
r2 = 0.44590138 . . .
r3 = 0.09118764 . . .
r4 = 0.80553900 . . .
...

• note the diagonal entries highlighted in red
• now consider another rational number R = 0.d1d2d3 . . . where

the di s are

di =

{
4 if dii 6= 4
5 if dii = 4

• the new rational number is 0.4544 . . .
• d1 = 4 because r11 6= 4
• d2 = 5 because r22 = 4, etc.



Uncountable Reals

• every real number has a unique decimal expansion
• the new real R = 0.4544 . . . from the previous slide is not in

the original list of ri s because R differs from ri at each ith
place
• thus there is at least one value between 0 and 1 that is not in

the original list
• but this is a contradiction, so the original assumption is false



Some Things Cannot Be Computed

• every computer program is a string over the ASCII alphabet
• by a counting argument on strings, the number of computer

programs is countably infinite

• by a diagonalization argument very similar to the one above,
the number of different natural-number functions f : N→ N is
uncountable
• thus there are more functions than there are computer

programs
• by the pigeonhole principle, some functions cannot be

computed

• in a totally different way, Alan Turing also proved via the
Halting Problem that some things cannot be computed


