Countability

Class 9

Happy

Programmer's Day!

Happy
 Programmer's Day!

13 September is the 256th day of a non-leap year

2.4 Countability

- let A and B be sets
- if there is a bijection from A to B, then clearly $|A|=|B|$
- i.e., A and B have the same cardinality
- if there is an injection from A to B, then $|A| \leq|B|$
- this leads directly to an interesting fact
- is there a bijection from the natural numbers to the odd natural numbers?
- yes: $f(n)=2 n+1$
- therefore, $|\mathrm{N}|=|\mathrm{Odd}|$
- there are exactly the same number of natural numbers as there are odd natural numbers

Countability

Countable Set

A set is countable if it is finite or if there is a bijection from it to the natural numbers.

- if there is such a bijection, the set is countably infinite
- the alternative is that the set is uncountable

Countability

- prove that the Cartesian product $\mathrm{N} \times \mathrm{N}$ is countable
- to do so, we must find a bijection $\mathrm{N} \times \mathrm{N} \rightarrow \mathrm{N}$
- a bijection is not obvious, but one was provided by Georg Cantor

Cantor

- Russian-born German
- 1845-1918
- created set theory
- defined infinity and countability
- he proved that infinity is not absolute - that there are infinities beyond infinity
- he was a devout religious Christian
- but was viciously and repeatedly attacked by theologians who believed God is infinite and nothing
 can be more infinite, including numbers

Cantor's Pairing

$\mathrm{N} \times \mathrm{N}$ is a set of tuples:

$$
\begin{aligned}
& \{(0,0),(1,0),(0,1), \ldots \\
& \quad(2,0),(1,1),(0,2), \ldots \\
& (3,0),(2,1),(1,2),(0,3), \ldots\}
\end{aligned}
$$

Cantor made up a table with three columns: tuple, sum of entries, and position, sorted by sum ascending, then by first tuple element descending

$\frac{\text { tuple }}{}$	sum	
$(0,0)$	0	position
$(1,0)$	1	1
$(0,1)$	1	2
$(2,0)$	2	3
$(1,1)$	2	4
$(0,2)$	2	5
$(3,0)$	3	6
$(2,1)$	3	7
$(1,2)$	3	8
$(0,3)$	3	9
$(4,0)$	4	10
$(3,1)$	4	11
$(2,2)$	4	12
$(1,3)$	4	13
$(0,4)$	4	14

Cantor's Pairing

- Cantor's pairing provides a unique position value for each tuple
- the exact formula for tuple (x, y) is

$$
f(x, y)=\frac{(x+y)^{2}+3 y+x}{2}
$$

- this is a bijection: 1-to-1 and onto
- each tuple of $\mathrm{N} \times \mathrm{N}$ is mapped to exactly one element of N
- and each natural number corresponds to one tuple
- therefore $\mathrm{N} \times \mathrm{N}$ is countable, and countably infinite
- note that Hein's position value is not exactly the same as Cantor's
- Hein orders the table by sum ascending, then by first element ascending instead of Cantor's descending

Countable Rationals

- the rational numbers are countable by the following argument (note that a rational number is always in lowest terms, so we don't have duplicates)
- the rationals can be partitioned into (i.e., are the union of) the positive rationals Q^{+}, the negative rationals Q^{-}, and zero
- since every positive rational is equivalent to a tuple in $N \times N$, we know that the positive rationals are countably infinite
- by the same argument, every negative rational is equivalent to a tuple in $\mathrm{N} \times \mathrm{N}$, and so the negative rationals are also countably infinite
- finally, the value zero is finite (and of size 1)
- each constituent of the partition is itself countable
- Cantor proved that the union of countable sets is countable
- therefore the rationals are countable

Uncountable Reals

- Cantor proved the real numbers are not countable
- the technique he used is called diagonalization
- consider just the real numbers between 0 and 1 and assume they are countable
- then they can be written in some order (position):

$$
\begin{aligned}
& r_{1}=0 . d_{11} d_{12} d_{13} \ldots \\
& r_{2}=0 . d_{21} d_{22} d_{33} \ldots \\
& r_{3}=0 . d_{31} d_{32} d_{33} \ldots
\end{aligned}
$$

Uncountable Reals

- for example, let

$$
\begin{aligned}
r_{1} & =0.23794102 \ldots \\
r_{2} & =0.44590138 \ldots \\
r_{3} & =0.09118764 \ldots \\
r_{4} & =0.80553900 \ldots
\end{aligned}
$$

- note the diagonal entries highlighted in red
- now consider another rational number $R=0 . d_{1} d_{2} d_{3} \ldots$ where the d_{i} s are

$$
d_{i}= \begin{cases}4 & \text { if } d_{i i} \neq 4 \\ 5 & \text { if } d_{i i}=4\end{cases}
$$

- the new rational number is $0.4544 \ldots$
- $d_{1}=4$ because $r_{11} \neq 4$
- $d_{2}=5$ because $r_{22}=4$, etc.

Uncountable Reals

- every real number has a unique decimal expansion
- the new real $R=0.4544 \ldots$ from the previous slide is not in the original list of r_{i} s because R differs from r_{i} at each i th place
- thus there is at least one value between 0 and 1 that is not in the original list
- but this is a contradiction, so the original assumption is false

Some Things Cannot Be Computed

- every computer program is a string over the ASCII alphabet
- by a counting argument on strings, the number of computer programs is countably infinite
- by a diagonalization argument very similar to the one above, the number of different natural-number functions $f: \mathrm{N} \rightarrow \mathrm{N}$ is uncountable
- thus there are more functions than there are computer programs
- by the pigeonhole principle, some functions cannot be computed
- in a totally different way, Alan Turing also proved via the Halting Problem that some things cannot be computed

