Inductively Defined Sets

Class 10

Inductive Definition

- a set can be defined by a formula
- the odd natural numbers are defined by

$$
\text { Odd }=\{2 n+1 \mid n \in \mathrm{~N}\}
$$

- there is an alternate way to define the odd naturals:

$$
\text { Odd }=\left\{\begin{array}{l}
1 \in \text { Odd } \\
\text { if } n \in \text { Odd then } n+2 \in \text { Odd }
\end{array}\right.
$$

(ATEX: \text\{Odd\} $=\backslash$ begin\{cases $\}$
1 \in \text\{0dd\}

\text\{if \} n \in \text\{ Odd then \}n+2 \in \text\{0dd\}
\end\{cases\}) }

Inductive Definition

$$
\text { Odd }=\left\{\begin{array}{l}
1 \in \text { Odd } \\
\text { if } n \in \text { Odd then } n+2 \in \text { Odd }
\end{array}\right.
$$

- this is an inductive set definition
- an inductive set definition consists of two parts:

1. the base (or basis) definition or definitions
2. the inductive rule or rules by which a new element is formed from one or more pre-existing elements

- the entire section is examples of inductively defined sets
- usually you're given the set and asked to find the bases and inductive rules
- occasionally you're given the bases and rules, and asked to find the elements

1

$$
S=\{3,16,29,42, \ldots\}
$$

$S=\{3,16,29,42, \ldots\}$
$3 \in S$; if $n \in S$ then $n+13 \in S$

2

$$
S=\{1,3,5,7, \ldots\}
$$

$S=\{1,3,5,7, \ldots\}$
$1 \in S$; if $n \in S$ then $n+2 \in S$

3

$$
S=\{\ldots,-4,-2,0,2,4, \ldots\}
$$

3

$S=\{\ldots,-4,-2,0,2,4, \ldots\}$
$0 \in S$; if $n \in S$ then $n+2$ and $n-2 \in S$

4

$$
S=\{3,5,9,17,33,65, \ldots\}
$$

4

$S=\{3,5,9,17,33,65, \ldots\}$
$3 \in S$; if $n \in S$ then $2 n-1 \in S$

5

$$
S=\{3,4,6,7,9,10,12, \ldots\}
$$

5

$S=\{3,4,6,7,9,10,12, \ldots\}$
3 and $4 \in S$; if $n \in S$ then $n+3 \in S$

6

$$
S=\{3,4,5,8,9,12,16,17,20,24,28,32,33, \ldots\}
$$

6

$S=\{3,4,5,8,9,12,16,17,20,24,28,32,33, \ldots\}$
Slide $4 \cup 4 \in S$; if $n \in S$ then n

7

$$
S=\left\{n \in \mathrm{~N} \left\lvert\,\left\lfloor\frac{n}{2}\right\rfloor\right. \text { is even }\right\} \text { (note: assume floating division) }
$$

$S=\left\{n \in \mathrm{~N} \left\lvert\,\left\lfloor\frac{n}{2}\right\rfloor\right.\right.$ is even (note: assume floating division)
0 and $1 \in S$; if $n \in S$ then $n+4 \in S$

8

$$
S=\{n \in \mathrm{~N} \mid n \bmod 5=2\}
$$

$S=\{n \in \mathrm{~N} \mid n \bmod 5=2\}$
$2 \in S$; if $n \in S$ then $n+5 \in S$

9

$S=\left\{a^{n} b c^{n} \mid n \in \mathrm{~N}\right\}$

9

$S=\left\{a^{n} b c^{n} \mid n \in \mathrm{~N}\right\}$
$b \in S$; if $s \in S$ then asc $\in S$

10

$$
S=\left\{a^{m} b^{n} \mid m, n \in N, m>0\right\}
$$

10

$S=\left\{a^{m} b^{n} \mid m, n \in \mathrm{~N}, m>0\right\}$ $a \in S$; if $s \in S$ then as $\in S$; if $s \in S$ then $s b \in S$.

11

$$
S=\left\{a^{2 n+1} \mid n \in \mathbb{N}\right\}
$$

11

$$
\begin{aligned}
& S=\left\{a^{2 n+1} \mid n \in \mathrm{~N}\right\} \\
& a \in S ; \text { if } s \in S \text { then saa } \in S
\end{aligned}
$$

12

$S=\left\{s \in\{a, b\}^{*} \mid s\right.$ has equal numbers of a 's and b 's $\}$

12

$S=\left\{s \in\{a, b\}^{*} \mid s\right.$ has equal numbers of a 's and b 's $\}$
$\Lambda \in S$; if $s \in S$ then sab, sba, asb, bsa, abs, bas $\in S$

13

Even palindromes over the alphabet $\{a, b\}$

13

Even palindromes over the alphabet $\{a, b\}$ $\Lambda \in S$; if $s \in S$ then asa, $b s b \in S$

14

$$
S=\{\langle a\rangle,\langle b, a\rangle,\langle b, b, a\rangle,\langle b, b, b, a\rangle, \ldots\}
$$

14

$S=\{\langle a\rangle,\langle b, a\rangle,\langle b, b, a\rangle,\langle b, b, b, a\rangle, \ldots\}$
$\langle a\rangle \in S$; if $L \in S$ then $\operatorname{cons}(b, L) \in S$

15

$S=\{\langle a, b\rangle,\langle b, a\rangle,\langle a, a, b\rangle,\langle b, b, a\rangle,\langle a, a, a, b\rangle,\langle b, b, b, a\rangle, \ldots\}$

15

$S=\{\langle a, b\rangle,\langle b, a\rangle,\langle a, a, b\rangle,\langle b, b, a\rangle,\langle a, a, a, b\rangle,\langle b, b, b, a\rangle, \ldots\}$
Slide 14 unioned with a and b reversed

16

$S=\{L \mid L$ has even length over $\{a, b, c\}\}$

16

$S=\{L \mid L$ has even length over $\{a, b, c\}\}$
$\rangle \in S$; if $L \in S$ then $\operatorname{cons}(x, \operatorname{cons}(y, L))$ where $x, y \in\{a, b, c\}$

17

$S=\{L \in \operatorname{lists}(\{a, b\}) \mid L$ has equal numbers of $a ' s$ and $b ' s\}$

17

$S=\{L \in \operatorname{lists}(\{a, b\}) \mid L$ has equal numbers of $a ' s$ and $b ' s\}$
$\rangle \in S$
if $L \in S$ then $\operatorname{cons}(a, \operatorname{cons}(b, L))$, $\operatorname{cons}(b, \operatorname{cons}(a, L))$, $\operatorname{consR}(a, \operatorname{consR}(b, L)), \operatorname{consR}(b, \operatorname{cons}(a, L)) \in S$

18

The set of all binary trees over $A=\{0,1\}$ such that if a node is 1 , its children are 0 's, and if a node is 0 its children are 1's. (Note: unclear whether the empty tree is allowed; we'll assume not.)

18

The set of all binary trees over $A=\{0,1\}$ such that if a node is 1 , its children are 0 's, and if a node is 0 its children are 1's. (Note: unclear whether the empty tree is allowed; we'll assume not.)
tree $(<>, 0,<>)$, tree $(<>, 1,<>) \in S$
if $T_{1}, T_{2} \in S$ and $\operatorname{root}\left(T_{1}\right)=\operatorname{root}\left(T_{2}\right)=0$ then tree $\left(T_{1}, 1, T_{2}\right) \in S$
if $T_{1}, T_{2} \in S$ and $\operatorname{root}\left(T_{1}\right)=\operatorname{root}\left(T_{2}\right)=1$ then $\operatorname{tree}\left(T_{1}, 0, T_{2}\right) \in S$

