
Recursive Functions

Class 15



Functions and Procedures

• section 3.2
• your author makes a big distinction between functions and

procedures
• this comes from the Pascal and Ada line of languages
• not as big a distinction in the C and C++ family

• function: arguments are not changed; a value is returned
examples: sqrt(x) floor(x) gcd(m, n)
• procedure: may or may not be a return value; if so it is via

changed arguments
examples: print(s) swap(a, b)



Recursively Defined Functions and Procedures

• following directly from the concept of inductively defined sets
of 3.1
• defined in terms of an inductively defined set
• a recursive function or procedure either generates the members

of an inductively defined set or processes the members of an
inductively defined set



Natural Numbers
• the natural numbers are an inductively defined set

• Basis: 0 ∈ N
• Induction: if n ∈ N then n + 1 ∈ N

• suppose we want the sum of the first n natural numbers
• we can write a recursive function to process the first n

elements of the inductively defined set
unsigned sum(unsigned n)
{

if (n == 0)
{

return 0;
}
return n + sum(n-1);

}

• notice the inductive definition moves forward (n + 1)
• the recursive definition moves backwards (n − 1)



String Complement

• the section moves away from explicitly defining an inductive set
• focuses on recursive functions

• we have a string over {a, b} for example ababbba

• we want its complement, in this case babaaab

• this could be defined iteratively
• but we wish to explore it recursively



String Complement

• Basis: the complement of the empty string is the empty string
• Recursion: a string of the form as: comp(as) = b comp(s)

a string of the form bs: comp(bs) = a comp(s)

string comp(s)
{

if (s.length() == 0)
{

return "";
}
if (s.at(0) == 'a')
{

return "b" + comp(s.substr(1));
}
return "a" + comp(s.substr(1));

}



String Prefix

• given two strings, a common problem is to find their longest
common prefix
• the longest common prefix of “monkey” and “money” is “mon”

the longest common prefix of “super” and “superb” is “super”

• for strings s and t there are four cases
1. s = Λ: the prefix is Λ (base case)
2. t = Λ: the prefix is Λ (base case)
3. s[0] 6= t[0]: the prefix is Λ (base case)
4. s[0] = t[0]: the prefix is s[0] + prefix(s[1, ], t[1, ])

see code



Sorting a List

• insertion sort is the name of a general class of sorting algorithm
• it is a very natural, intuitive way to sort a list of things
• it depends on inserting one item into a list that is already

sorted
• the one new item is inserted into the correct spot, resulting in

a list that is one longer, also sorted

• the key operation is insert, not sorting per se



Inserting Into a Sorted List

• arguments: an item to insert, and a list in which to insert it
• precondition: the list is sorted
• postcondition: the list contains the element, and is sorted

• Basis: if the list is empty, the item is added to the front of the
list
• Basis: if the item is smaller than or equal to the head element,

the item is added to the front of the list
• Recursion: the original head is prepended to the result of

inserting the item into the tail of the list
see code



Tree Terminology

• tree
• node
• root
• edge
• child
• parent
• leaf
• sibling
• path

• path length
• depth
• height
• ancestor
• descendant
• proper ancestor
• proper descendant
• traversal



Tree

a tree is a connected graph

0 edges and 0 nodes

or

any two


acyclic
n nodes
n − 1 edges

• most of our trees will be rooted
• a distinguished node root (possibly nullptr)
• directed, with a unique path from the root to every other node



Binary Trees

• by far the most important tree in CS is the binary tree
• every node has exactly two children (either of which may be

null)

Implementation
class tree_node
{

Object data;
tree_node* left_child;
tree_node* right_child;

};



Visualizing

• a binary tree consists of
• a root, empty or an object containing data
• a left child which is a binary tree
• a right child which is a binary tree

root

TL TR



Traversals

• traversal: “visiting” every node in the tree exactly once
• always starting at the root
• three important tree traversal types

• preorder
• inorder
• postorder



Traversals

preorder
1. visit the root
2. traverse children

left & right

inorder
1. traverse left child
2. visit the root
3. traverse right

child

postorder
1. traverse children

left & right
2. visit the root



Preorder Traversal

void preorder(tree_node* node)
{

if (node != nullptr)
{

visit(node);
preorder(node->left_child);
preorder(node->right_child);

}
}



Postorder Traversal

void postorder(tree_node* node)
{

if (node != nullptr)
{

postorder(node->left_child);
postorder(node->right_child);
visit(node);

}
}



Inorder Traversal

void inorder(tree_node* node)
{

if (node != nullptr)
{

inorder(node->left_child);
visit(node);
inorder(node->right_child);

}
}



BST

• if we impose a couple of additional conditions, we get the
binary search tree
1. the data is of a Comparable type
2. the data in a node is greater than any value in its left child

subtree
3. the data in a node is less than any value in its right child

subtree

• simplifying assumption: there are no duplicate values in the
tree



Example BST

1

2

3

4

6

8



Not a BST

1

2

3

4

7

6

8



BST Inorder

• note that an inorder traversal of a BST always produces a
sequence of visits in strict order


