Binary Relations

Class 26

Introduction

- a binary relation is like a function in which the domain and the codomain are the same set
- if A is a set, then $A \times A$ is the set of all possible tuples of the form (x, y) where x and y are both elements of A
- a relation R over A is a subset of these tuples

Example

- let $A=\{a, b, c\}$
- then

$$
\begin{aligned}
A \times A=\{ & (a, a),(a, b),(a, c) \\
& (b, a),(b, b),(b, c), \\
& (c, a),(c, b),(c, c)\}
\end{aligned}
$$

- let R be the relation "is less than" $(<)$ over A
- then $R=\{(a, b),(a, c),(b, c)\}$ which is a subset of $A \times A$

Notation

- for any relation R, we can write any of these
- $R(a, b)$
- $a R b$
- $(a, b) \in R$
- in the case of "is less than", these become
- < (a, b)
- $a<b$
- $(a, b) \in<$

Digraph

- when we draw functions as graphs, they look like this

Domain
Codomain

Relation Digraph

- but since a relation as identical domain and codomain, we draw relations like this:

Alternate Forms

- thus there are three main ways we can specify a relation

1. a set of tuples, e.g., $\{(a, b),(a, c),(b, c)\}$
2. a rule, e.g., $\{(x, y) \mid x, y \in A$ and $x<y\}$
3. a digraph, as on the previous slide

Properties

- there are five properties that every relation either has or does not have
- you have to memorize and know these properties
- a relation is

1. reflexive if every element in A is related to itself

Properties

- there are five properties that every relation either has or does not have
- you have to memorize and know these properties
- a relation is

1. reflexive if every element in A is related to itself
2. symmetric if for every $a b$ then $b R a$

Properties

- there are five properties that every relation either has or does not have
- you have to memorize and know these properties
- a relation is

1. reflexive if every element in A is related to itself
2. symmetric if for every $a R b$ then $b R a$
3. transitive if for every $a R b$ and $b R c$ then $a R c$

Properties

- there are five properties that every relation either has or does not have
- you have to memorize and know these properties
- a relation is

1. reflexive if every element in A is related to itself
2. symmetric if for every $a R b$ then $b R a$
3. transitive if for every $a R b$ and $b R c$ then $a R c$
4. irreflexive if no element is related to itself

Properties

- there are five properties that every relation either has or does not have
- you have to memorize and know these properties
- a relation is

1. reflexive if every element in A is related to itself
2. symmetric if for every $a R b$ then $b R a$
3. transitive if for every $a R b$ and $b R c$ then $a R c$
4. irreflexive if no element is related to itself
5. antisymmetric if $a R b$ and $b R a$ then a and b are identical

Properties

- there are five properties that every relation either has or does not have
- you have to memorize and know these properties
- a relation is

1. reflexive if every element in A is related to itself
2. symmetric if for every $a R b$ then $b R a$
3. transitive if for every $a R b$ and $b R c$ then $a R c$
4. irreflexive if no element is related to itself
5. antisymmetric if $a R b$ and $b R$ a then a and b are identical

- properties 1,2 , and 3 are usually thought of as positive properties, in that they specify things that must exist if the relation has that property
- properties 4 and 5 are negative properties that specify things that a relation cannot have if it has that property

Visualize Reflexive

- $(a, a),(b, b), \ldots$ for every element
- every element has a self-loop, regardless of other arrows

Visualize Symmetric

- every arrow except a self-loop is paired with one going the other way

Visualize Transitive

- easy to understand but hard to spot
- every time there's $x \rightarrow y$ and $y \rightarrow z$ there's also a $x \rightarrow z$

Visualize Irreflexive

- there are no self-loops, regardless of other arrows

Visualize Antiymmetric

- nowhere is there a complementary pair, regardless of other arrows

Equality

- reflexive?
- symmetric?
- transitive?
- irreflexive?
- antisymmetric?

Equality

- reflexive? yes $x=x$ for every element
- symmetric?
- transitive?
- irreflexive?
- antisymmetric?

Equality

- reflexive? yes $x=x$ for every element
- symmetric? yes if $x=x$ then $x=x$
- transitive?
- irreflexive?
- antisymmetric?
a

Equality

- reflexive? yes $x=x$ for every element
- symmetric? yes if $x=x$ then $x=x$
- transitive? yes every time $x=y$ and $y=z$ then $x=z$
- irreflexive?
- antisymmetric?

Equality

- reflexive? yes $x=x$ for every element
- symmetric? yes if $x=x$ then $x=x$
- transitive? yes every time $x=y$ and $y=z$ then $x=z$
- irreflexive? no a single self-loop kills it
- antisymmetric?

Equality

- reflexive? yes $x=x$ for every element
- symmetric? yes if $x=x$ then $x=x$
- transitive? yes every time $x=y$ and $y=z$ then $x=z$
- irreflexive? no a single self-loop kills it
- antisymmetric? yes there are no complementary pairs

Equality

- reflexive? yes $x=x$ for every element
- symmetric? yes if $x=x$ then $x=x$
- transitive? yes every time $x=y$ and $y=z$ then $x=z$
- irreflexive? no a single self-loop kills it
- antisymmetric? yes there are no complementary pairs
a
- note that a relation can be both symmetric and antisymmetric

Less Than

- reflexive?

- symmetric?
- transitive?
- irreflexive?
- antisymmetric?

Less Than

- reflexive? no $x \nless x$ for every element

- symmetric?
- transitive?
- irreflexive?
- antisymmetric?

Less Than

- reflexive? no $x \nless x$ for every element
- symmetric? no if $x<y$ then $y \nless x$
- transitive?
- irreflexive?
- antisymmetric?

Less Than

- reflexive? no $x \nless x$ for every element
- symmetric? no if $x<y$ then $y \nless x$
- transitive? yes every time $x<y$ and $y<z$ then $x<z$
- irreflexive?
- antisymmetric?

Less Than

- reflexive? no $x \nless x$ for every element
- symmetric? no if $x<y$ then $y \nless x$
- transitive? yes every time $x<y$ and $y<z$ then $x<z$
- irreflexive? yes no self-loops
- antisymmetric?

Less Than

- reflexive? no $x \nless x$ for every element
- symmetric? no if $x<y$ then $y \nless x$
- transitive? yes every time $x<y$ and $y<z$ then $x<z$
- irreflexive? yes no self-loops
- antisymmetric? yes there are no complementary pairs

Less Than Or Equal To

- reflexive?
- symmetric?
- transitive?
- irreflexive?
- antisymmetric?

Less Than Or Equal To

- reflexive? yes $x \leq x$ for every element
- symmetric?
- transitive?
- irreflexive?
- antisymmetric?

Less Than Or Equal To

- reflexive? yes $x \leq x$ for every element
- symmetric? no if $x \leq y$ then $y \leq x$ is not necessarily true
- transitive?
- irreflexive?
- antisymmetric?

Less Than Or Equal To

- reflexive? yes $x \leq x$ for every element
- symmetric? no if $x \leq y$ then $y \leq x$ is not necessarily true
- transitive? yes every time $x \leq y$ and $y \leq z$ then $x \leq z$
- irreflexive?
- antisymmetric?

Less Than Or Equal To

- reflexive? yes $x \leq x$ for every element
- symmetric? no if $x \leq y$ then $y \leq x$ is not necessarily true
- transitive? yes every time $x \leq y$ and $y \leq z$ then $x \leq z$
- irreflexive? no a single self-loop kills it
- antisymmetric?

Less Than Or Equal To

- reflexive? yes $x \leq x$ for every element
- symmetric? no if $x \leq y$ then $y \leq x$ is not necessarily true
- transitive? yes every time $x \leq y$ and $y \leq z$ then $x \leq z$
- irreflexive? no a single self-loop kills it
- antisymmetric? yes there are no complementary pairs

Is Parent Of

- reflexive?
- symmetric?

- transitive?
- irreflexive?
- antisymmetric?

Is Parent Of

- reflexive? no no one is their own parent
- symmetric?

- transitive?
- irreflexive?
- antisymmetric?

Is Parent Of

- reflexive? no no one is their own parent
- symmetric? no if Ann is Bob's parent, then Bob cannot be Ann's parent
- transitive?
- irreflexive?
- antisymmetric?

Is Parent Of

- reflexive? no no one is their own parent
- symmetric? no if Ann is Bob's parent, then Bob cannot be Ann's parent
- transitive? no if Ann is Bob's parent and Bob is Carol's parent, then Ann is not Carol's parent
- irreflexive?
- antisymmetric?

Is Parent Of

- reflexive? no no one is their own parent
- symmetric? no if Ann is Bob's parent, then Bob cannot be Ann's parent
- transitive? no if Ann is Bob's parent and Bob is Carol's parent, then Ann is not Carol's parent
- irreflexive? yes no one is their own parent
- antisymmetric?

Is Parent Of

- reflexive? no no one is their own parent
- symmetric? no if Ann is Bob's parent, then Bob cannot be Ann's parent
- transitive? no if Ann is Bob's parent and Bob is Carol's parent, then Ann is not Carol's parent
- irreflexive? yes no one is their own parent
- antisymmetric? yes same as symmetric

Composition

- relations can be composed just like other functions
- but for relations we think of them a little differently
- let R and S be binary relations
- R is a set of tuples, and S is is a set of tuples
- then $R \circ S$ is the set of tuples (a, c) for all $(a, b) \in R$ and $(b, c) \in S$

Composition

- let $A=\{a, b, c, d\}$
- let R be the relation "less than" and S be the relation "equal to"
- what is in R and S individually?
- $R=\{(a, b),(a, c),(a, d),(b, c),(b, d),(c, d)\}$
- $S=\{(a, a),(b, b),(c, c),(d, d)\}$
- what is in $R \circ S$?

Composition

- let $A=\{a, b, c, d\}$
- let R be the relation "less than" and S be the relation "equal to"
- what is in R and S individually?
- $R=\{(a, b),(a, c),(a, d),(b, c),(b, d),(c, d)\}$
- $S=\{(a, a),(b, b),(c, c),(d, d)\}$
- what is in $R \circ S$?
- $R \circ S=\{(a, b),(a, c),(a, d),(b, c),(b, d),(c, d)\}$

Composition

- let $A=\{a, b, c, d\}$
- let R be the relation "less than" and S be the relation "equal to"
- what is in R and S individually?
- $R=\{(a, b),(a, c),(a, d),(b, c),(b, d),(c, d)\}$
- $S=\{(a, a),(b, b),(c, c),(d, d)\}$
- what is in $R \circ S$?
- $R \circ S=\{(a, b),(a, c),(a, d),(b, c),(b, d),(c, d)\}$
- what is in $S \circ R$?

Composition

- let $A=\{a, b, c, d\}$
- let R be the relation "less than" and S be the relation "equal to"
- what is in R and S individually?
- $R=\{(a, b),(a, c),(a, d),(b, c),(b, d),(c, d)\}$
- $S=\{(a, a),(b, b),(c, c),(d, d)\}$
- what is in $R \circ S$?
- $R \circ S=\{(a, b),(a, c),(a, d),(b, c),(b, d),(c, d)\}$
- what is in $S \circ R$?
- $S \circ R=\{(a, b),(a, c),(a, d),(b, c),(b, d),(c, d)\}$

Self Composition

- a relation can always be composed with itself
- let $R=\{(a, b),(b, c),(c, d)\}$

- then $R \circ R=R^{2}=\{(a, c),(b, d)\}$

- $R \circ R \circ R=R^{3}=\{(a, d)\}$

R^{0}

- to make the definitions all work, we define

$$
R^{0}=\{(x, x) \mid x \in A\}
$$

- it doesn't really make a lot of sense
- but it makes things work

Closure

- the three "positive" properties are interesting:
- if relation R does not have the property, we can add tuples to R until it does
- this is the concept of the closure of a relation

Closure

- let R over $A=\{a, b, c\}$ be

$$
\{(a, a),(a, b),(b, a),(b, c)\}
$$

- reflexive?
- symmetric?
- transitive?

Closure

- let R over $A=\{a, b, c\}$ be

$$
\{(a, a),(a, b),(b, a),(b, c)\}
$$

- reflexive? no
- symmetric?
- transitive?

Closure

- let R over $A=\{a, b, c\}$ be

$$
\{(a, a),(a, b),(b, a),(b, c)\}
$$

- reflexive? no
- symmetric? no
- transitive?

Closure

- let R over $A=\{a, b, c\}$ be

$$
\{(a, a),(a, b),(b, a),(b, c)\}
$$

- reflexive? no
- symmetric? no
- transitive? no

Closure

- let R over $A=\{a, b, c\}$ be

$$
\{(a, a),(a, b),(b, a),(b, c)\}
$$

- why is R not reflexive?
- what needs to be added to R to make it be reflexive?

Closure

- let R over $A=\{a, b, c\}$ be

$$
\{(a, a),(a, b),(b, a),(b, c)\}
$$

- why is R not reflexive?
- what needs to be added to R to make it be reflexive?
- (b, b) and (c, c)
- so add them:

$$
R \cup\{(b, b),(c, c)\}=r(R)
$$

- $r(R)$ is the reflexive closure of R

Symmetric Closure

- why is R not symmetric?
- what needs to be added to R to make it be symmetric?

Symmetric Closure

- why is R not symmetric?
- what needs to be added to R to make it be symmetric?
- (c, b), so add it

$$
s(R)=R \cup\{(c, b)\}
$$

Transitive Closure

- why is R not transitive?

Transitive Closure

- why is R not transitive?
- (a, c)

Transitive Closure

- why is R not transitive?
- (a, c)
- and (b, b) !

Transitive Closure

$$
a \longrightarrow b \longrightarrow c \longrightarrow d
$$

Transitive Closure

- need to add (a, c) and (b, d)

Transitive Closure

- need to add (a, c) and (b, d)
- oops, now we need to add (a, d)
- now it's transitive
- every time we add an edge, that might require more edges
- for $|A|=n$ there could be n rounds of adding edges
- if A is infinite, the process of creating transitive closure could be infinite

Multiple Closures

- we can create double and triple closures
- $r s(R)$ is the reflexive closure of the symmetric closure of R
- we will not do page 214 Path Problems to the end of section 4.1.

