Equivalence Relations

Class 27

Introduction

- humans categorize things
- we would drown in details if we did not (in fact, an inability to categorize is one recognized form of insanity)
- a relation is called an equivalence if it is reflexive, symmetric, and transitive: RST
- we use the symbol R for an arbitrary relation
- we use the symbol \sim for an arbitrary equivalence relation ($\mathrm{A} \mathrm{T}_{\mathrm{E}} \mathrm{X}: \backslash$ sim)
- the most obvious equivalence relation is simple numeric equality

$$
R=\{(x, x) \mid x=x\}
$$

Evenness Equivalence

- there are many other equivalence relations than equality, however
- for the set of integers, let $x \sim y$ mean x and y have the same evenness
- this means all the even integers are mutually equivalent to each other, and all the odd integers are mutually equivalent to each other
- confirm this is RST

Equivalence Examples

- for integers, $x \sim y$ means $x^{2}=y^{2}$
- for people, $x \sim y$ means x and y have the same biological mother
- for rationals, $x \sim y$ means $x-y$ is an integer
- for binary trees, $x \sim y$ means x and y have the same number of nodes

Intersection of Equivalences

- an observation:
- let S and T be two different equivalence relations on the same set
- then $R=S \cup T$ is guaranteed to also be an equivalence relation
- let $S=\{(x, y) \mid x$ and y have the same first name $\}$
- let $T=\{(x, y) \mid x$ and y have the same last name $\}$
- S and T are both equivalence relations
- then
$S \cup T=\{(x, y) \mid x$ and y have the same first and last names $\}$ is also an equivalence relation

Kernel Relations

- every function generates an equivalence relation on the function's domain
- for example let $f(n)=n \bmod 2$ on the domain of N

- so we have

$$
R=\{(x, y) \mid x, y \in \mathrm{~N} \text { and } x \bmod 2=y \bmod 2\}
$$

- in words, $x R y$ if $f(x)$ and $f(y)$ point to the same place in f 's codomain

Kernel Relations

- for any R where $x R y$ if $f(x)$ and $f(y)$ point to the same place in f 's codomain, R is guaranteed to be an equivalence relation
- mathematicians use the phrase "kernel" to mean something that generates something
- in this context f is a function that generates an equivalence relation
- the relation that f generates is guaranteed to be an equivalence relation
- the relation is called the kernel relation of f
- we can sometimes use this kernel concept to prove that a relation is in fact RST, an equivalence relation

Using a Kernel Relation

- suppose we are given R on integers defined as $x R y$ iff $x-y$ is even
- prove that R is an equivalence relation, i.e., that R is RST

$$
x R y \text { iff } x-y \text { is even given }
$$ iff x, y both are even or odd properties of integers iff $x \bmod 2=y \bmod 2$ definition of even and odd

- therefore R is an equivalence relation because it's the kernel relation of the function $f(n)=n \bmod 2$

Equivalence Classes

- a natural part of equivalence relations is the concept of equivalence classes
- all the things in a set that are mutually equivalent form a class
- all the equivalence classes form a partition of a set: a set of nonempty subsets that are mutually disjoint and whose union is the whole set
- let $x R y$ be the relation " x is a phone number with the same area code as $y^{\prime \prime}$
- what are the equivalence classes of R ?
- phone numbers 201-200-0000 through 201-299-9999 are in one equivalence class
- phone numbers 202-200-0000 through 202-299-9999 are in another equivalence class

Equivalence Class Name

- consider the equivalence relation over naturals defined by the function "mod2"
- what are the equivalence classes?
- $0,2,4, \ldots$ are all members of one equivalence class
- $1,3,5, \ldots$ are all members of the other equivalence class
- it would be useful to have a name for the different equivalence classes
- what do we call the class $0,2,4, \ldots$? obviously, in this case, we could call it the "evens"
- but in general (like the area codes) how do we refer to an equivalence class?

Equivalence Class Terminology

- [a] is the name for the class of everything equivalent to a
- so a name for the evens is [0]
- or [2] or [100]
- a name for the class of phone numbers starting with 202 is [202-200-0000]
- a is called the canonical name of the class
- a can be any element, but should be obvious
- for the odds, [1] is the only real choice
- for the evens, either [0] or [2] would make sense

Kernel Recap

- let $f: Z \rightarrow N$ be $f(x)=|x|$
- what are the equivalence classes of the kernel relation of f ?

Kernel Recap

- let $f: Z \rightarrow N$ be $f(x)=|x|$
- what are the equivalence classes of the kernel relation of f ?

$$
\begin{aligned}
& {[0]=\{0\}} \\
& {[1]=\{-1,1\}} \\
& {[2]=\{-2,2\}} \\
& {[3]=\{-3,3\}}
\end{aligned}
$$

Software Testing

```
function p(int x)
{
    if (x > 0)
    {
        foo(x);
    }
    else if (x % 2 == 0)
    {
        bar(x);
    }
    else
    {
        bam(x);
    }
}
```

- equivalence classes are extensively used in software engineering to create test cases for code
- p's input set is essentially infinite, so we can't test all possible inputs
- but the if-else structure partitions p's input into three equivalence classes: the positives, the negative odds, and the negative evens plus 0
- if we pick one element of each equivalence class, we will execute all pathways of p

