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Introduction

• recursion is an extremely powerful programming technique
• many things that are difficult to express iteratively are easy to

express recursively
• but if we are to trust that recursion works as intended, we

need to be able to reason formally about it
• one way of doing so is by mathematical induction

• induction and recursion are two sides of the same coin



Sum of Squares
• one question on the last assignment was to write a program to

calculate the sum of squares of the first n positive integers
• most of you wrote a program that corresponded to this

formulation:

sumsq(n) =

{
1 if n = 1
sumsq(n − 1) + n2 otherwise

• but at least one of you gave the following program:

sumsq(n) =
n(n + 1)(2n + 1)

6

• these are radically different formulations, one recursive, one not
• you can easily check a few examples, but is either one correct

for all positive integers? i.e., are they equivalent
• and if so, can you prove it?



Mathematical Induction

• note that any non-empty subset of the natural numbers has a
least element based on less-than

• this is the same as saying that every descending chain of
natural numbers is finite: the naturals are a well-founded poset

• suppose we wish to prove some predicate P(n) is true for all
natural numbers n ≥ m where m is some specified natural
value (usually m is 0 or 1)

• the principle of mathematical induction states that we can do
so in just two steps:

1. prove P(m) is true directly
2. assume P(k) is true for an arbitrary k > m, and use this to

prove that P(k + 1) is true



Sum of Squares

• recall the claim above

sumsq(n) =
n(n + 1)(2n + 1)

6

• if this is true, that means

1+ 4+ 9+ · · ·+ n2 =
n(n + 1)(2n + 1)

6

• let P(n) denote the above equation and let m = 1
• to prove it using mathematical induction, we have to perform

the two steps



Step 1

• prove P(m) directly where m = 1

1 =
1(1+ 1)(2(1) + 1)

6

=
1(2)(3)

6
= 1

• this is true, so step 1 is done
• step 1 is usually more a “verification” than a “proof”



Step 2
• assume P(k) is true for an arbitrary k > m, and use this to

prove that P(k + 1) is true
• using the assumption, we have P(k + 1)

1+ 4+ · · ·+ k2 + (k + 1)2

= (1+ 4+ · · ·+ k2) + (k + 1)2 associate

=
k(k + 1)(2k + 1)

6
+ (k + 1)2 assumption

=
[k + 1]([k + 1] + 1)(2[k + 1] + 1)

6
algebra

• expression (3) is exactly P(k + 1), and thus step 2 is done

• the principle of mathematical induction allows us to state that
we have now proved for all positive integers n

1+ 4+ 9+ · · ·+ n2 =
n(n + 1)(2n + 1)

6



Recursive Sum of Squares

• the student who submitted the Prolog program above
submitted a correct program

• what about the students who submitted the recursive program?

sumsq(n) =

{
1 if n = 1
sumsq(n − 1) + n2 otherwise

• we can use a very similar mathmatical induction argument to
show that this is also correct and computes the same value

• let P(n) be the statement sumsq(n) = 1+ 4+ 9+ · · ·+ n2 for
all n > 0

• step 1, let m = 1 and verfify that 1 = 1 and so the statment is
correct



Step 2

• assume f (k) is true and use that to prove f (k + 1) is true

f (k + 1) = f ([k + 1]− 1) + (k + 1)2 definition of f

= f (k) + (k + 1)2 algebra

= 1+ 4+ 9+ · · ·+ k2 + (k + 1)2 assumption

= 1+ 4+ 9+ · · ·+ (k + 1)2 (4)

• expression (4) is the rhs of f (k + 1), and so the statement is
proved correct for all integers greater than 0



Well-Foundedness

• mathematical induction works because the naturals are a
well-founded poset

• recursion works from an arbitrary starting point backwards
down the descending chain to the base case minimal element

• induction works by showing the proposition is true for the base
case and by showing that the recursive step between two
arbitrary elements is valid

• and therefore it is valid for the entire descending chain from an
arbitrary element down to the base case

• therefore mathematical induction, and recursion, can be used
on any well-founded poset


