Inductive Proof

Class 30
Introduction

• recursion is an extremely powerful programming technique
• many things that are difficult to express iteratively are easy to express recursively
• but if we are to trust that recursion works as intended, we need to be able to reason formally about it
• one way of doing so is by mathematical induction
• induction and recursion are two sides of the same coin
Sum of Squares

• one question on the last assignment was to write a program to calculate the sum of squares of the first n positive integers
• most of you wrote a program that corresponded to this formulation:

$$\text{sumsq}(n) = \begin{cases}
1 & \text{if } n = 1 \\
\text{sumsq}(n - 1) + n^2 & \text{otherwise}
\end{cases}$$

• but at least one of you gave the following program:

$$\text{sumsq}(n) = \frac{n(n + 1)(2n + 1)}{6}$$

• these are radically different formulations, one recursive, one not
• you can easily check a few examples, but is either one correct for all positive integers? i.e., are they equivalent
• and if so, can you prove it?
Mathematical Induction

• note that any non-empty subset of the natural numbers has a least element based on less-than

• this is the same as saying that every descending chain of natural numbers is finite: the naturals are a well-founded poset

• suppose we wish to prove some predicate $P(n)$ is true for all natural numbers $n \geq m$ where m is some specified natural value (usually m is 0 or 1)

• the principle of mathematical induction states that we can do so in just two steps:
 1. prove $P(m)$ is true directly
 2. assume $P(k)$ is true for an arbitrary $k > m$, and use this to prove that $P(k + 1)$ is true
Sum of Squares

• recall the claim above

\[\text{sumsq}(n) = \frac{n(n + 1)(2n + 1)}{6} \]

• if this is true, that means

\[1 + 4 + 9 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \]

• let \(P(n) \) denote the above equation and let \(m = 1 \)

• to prove it using mathematical induction, we have to perform the two steps
Step 1

• prove $P(m)$ directly where $m = 1$

\[1 = \frac{1(1 + 1)(2(1) + 1)}{6} \]
\[= \frac{1(2)(3)}{6} \]
\[= 1 \]

• this is true, so step 1 is done

• step 1 is usually more a “verification” than a “proof”
Step 2

• assume \(P(k) \) is true for an arbitrary \(k > m \), and use this to prove that \(P(k + 1) \) is true
• using the assumption, we have \(P(k + 1) \)

\[
1 + 4 + \cdots + k^2 + (k + 1)^2
\]

\[
= (1 + 4 + \cdots + k^2) + (k + 1)^2 \quad \text{associate}
\]

\[
= \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \quad \text{assumption}
\]

\[
= \frac{[k + 1][k + 1] + 1)(2[k + 1] + 1)}{6} \quad \text{algebra}
\]

• expression (3) is exactly \(P(k + 1) \), and thus step 2 is done

• the principle of mathematical induction allows us to state that we have now proved for all positive integers \(n \)

\[
1 + 4 + 9 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6}
\]
Recursive Sum of Squares

• the student who submitted the Prolog program above submitted a correct program
• what about the students who submitted the recursive program?

\[
\text{sumsq}(n) = \begin{cases}
 1 & \text{if } n = 1 \\
 \text{sumsq}(n - 1) + n^2 & \text{otherwise}
\end{cases}
\]

• we can use a very similar mathematical induction argument to show that this is also correct and computes the same value
• let \(P(n) \) be the statement \(\text{sumsq}(n) = 1 + 4 + 9 + \cdots + n^2 \) for all \(n > 0 \)
• step 1, let \(m = 1 \) and verify that \(1 = 1 \) and so the statement is correct
• assume \(f(k) \) is true and use that to prove \(f(k + 1) \) is true

\[
f(k + 1) = f([k + 1] - 1) + (k + 1)^2 \\
= f(k) + (k + 1)^2 \quad \text{definition of } f \\
= 1 + 4 + 9 + \cdots + k^2 + (k + 1)^2 \quad \text{algebra} \\
= 1 + 4 + 9 + \cdots + (k + 1)^2 \quad \text{assumption} \\
\]

(4)

• expression (4) is the rhs of \(f(k + 1) \), and so the statement is proved correct for all integers greater than 0
Well-Foundedness

- mathematical induction works because the naturals are a well-founded poset
- recursion works from an arbitrary starting point backwards down the descending chain to the base case minimal element
- induction works by showing the proposition is true for the base case and by showing that the recursive step between two arbitrary elements is valid
- and therefore it is valid for the entire descending chain from an arbitrary element down to the base case
- therefore mathematical induction, and recursion, can be used on any well-founded poset