Inductive Proof

Class 30



Introduction

recursion is an extremely powerful programming technique

many things that are difficult to express iteratively are easy to
express recursively

but if we are to trust that recursion works as intended, we
need to be able to reason formally about it

one way of doing so is by mathematical induction

induction and recursion are two sides of the same coin



Sum of Squares

one question on the last assignment was to write a program to
calculate the sum of squares of the first n positive integers

most of you wrote a program that corresponded to this
formulation:

1 ifn=1

sumsq(n — 1) + n?> otherwise

sumsq(n) = {

but at least one of you gave the following program:

n(n+1)(2n + 1)
6

sumsq(n) =

these are radically different formulations, one recursive, one not

you can easily check a few examples, but is either one correct
for all positive integers? i.e., are they equivalent

and if so, can you prove it?



Mathematical Induction

note that any non-empty subset of the natural numbers has a
least element based on less-than

this is the same as saying that every descending chain of
natural numbers is finite: the naturals are a well-founded poset

suppose we wish to prove some predicate P(n) is true for all
natural numbers n > m where m is some specified natural
value (usually mis 0 or 1)

the principle of mathematical induction states that we can do
so in just two steps:
1. prove P(m) is true directly
2. assume P(k) is true for an arbitrary k > m, and use this to
prove that P(k + 1) is true



Sum of Squares

recall the claim above

n(n+1)(2n+1)
6

sumsq(n) =

if this is true, that means

I SR n(n+1)(2n+1)
6

let P(n) denote the above equation and let m =1

to prove it using mathematical induction, we have to perform
the two steps



Step 1

® prove P(m) directly where m =1

1(1+1)(2(1) + 1)
6
1(2)(3)
6

=1

® this is true, so step 1 is done

® step 1 is usually more a “verification” than a “proof”



Step 2

assume P(k) is true for an arbitrary k > m, and use this to
prove that P(k + 1) is true
using the assumption, we have P(k + 1)

1+4+- +k*+ (k+1)

= (1444 -+ k) + (k+1)>2 associate

_ k(k+1)6(2k+1) + (k+1)? assumption
k+1([k+ 1]+ 1)(2[k+ 1]+ 1
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expression (3) is exactly P(k + 1), and thus step 2 is done

the principle of mathematical induction allows us to state that
we have now proved for all positive integers n

(n+1)(2n+1)
6

1444094 n?="



Recursive Sum of Squares

the student who submitted the Prolog program above
submitted a correct program

what about the students who submitted the recursive program?

1 ifn=1
sumsq(n — 1) + n?> otherwise

sumsq(n) = {

we can use a very similar mathmatical induction argument to
show that this is also correct and computes the same value

let P(n) be the statement sumsq(n) =1+ 4+ 9+ --- + n? for
alln>0

step 1, let m =1 and verfify that 1 = 1 and so the statment is
correct



Step 2

® assume f(k) is true and use that to prove f(k + 1) is true

flk+1)=f(lk+1] = 1)+ (k+1)? definition of f
= f(k) + (k + 1) algebra
=1+4+4+9+---+Kk?>+ (k+1)> assumption
=1+4+9+ -+ (k+1) (4)

® expression (4) is the rhs of f(k + 1), and so the statement is
proved correct for all integers greater than 0



Well-Foundedness

mathematical induction works because the naturals are a
well-founded poset

recursion works from an arbitrary starting point backwards
down the descending chain to the base case minimal element

induction works by showing the proposition is true for the base
case and by showing that the recursive step between two
arbitrary elements is valid

and therefore it is valid for the entire descending chain from an
arbitrary element down to the base case

therefore mathematical induction, and recursion, can be used
on any well-founded poset



