
Summations

Class 36



Introduction

• Section 4.4 was about using proof by induction to prove that a
closed form is correct
• this section is about techniques for finding closed forms



Closed Forms

n∑
i=1

i = 1+ 2+ 3+ · · ·+ n =
n(n + 1)

2

• a closed form is an expression that is not a symbolic recipe
• that does not have ellipses
• that can be computed directly

(LATEX: \sum_{i=1}^n i)

summation
symbol

a sum
of terms

closed
form



Working With Summations
• box 5.2.1 on page 298 has some “facts”
• fact a: sum of a constant

n∑
i=m

c = c(n −m + 1)

• c is a constant
• m ≤ n, m, n ∈ N

• example:
∑10

i=5 2 (notice how inline summation is formatted)

10∑
i=5

2 = 2(10− 5+ 1)

= 12



Constant Coefficient

• fact b: each term has an constant coefficient that can be
factored out

n∑
i=m

cai = c
n∑

i=m

ai

• example

10∑
i=1

4i = 4
10∑
i=1

i

= 4
10(10+ 1)

2
= 220



Collapsing Sums

• fact c: each element of the series is composed of two terms,
adding a new term but subtracting the term from last time
• this happens more often than you might think

n∑
i=1

(ai − ai−1) = an − a0

8∑
i=1

(i − (i − 1)) = (1− 0) + (2− 1) + · · ·+ (8− 7)

= 8− 7+ 7− 6+ · · ·+ 2− 1+ 1− 0
= 8− 0
= 8



Summation of Added Terms

• fact d: each element of the summation is a pair of terms,
added together

n∑
i=m

(ai + bi ) =
n∑

i=m

ai +
n∑

i=m

bi

10∑
i=1

(2i + 3i) =
10∑
i=1

2i +
10∑
i=1

3i

= 110+ 165
= 275

• facts e – g are used less often



Geometric Progression

• a common summation is
n∑

i=0

ai = a0 + a1 + a2 + · · ·+ an

• what is a closed form?
start with the following expression, and then factor

ai+1 − ai = ai (a− 1)

apply summation to both sides to get

n∑
i=0

(ai+1 − ai ) =
n∑

i=0

(ai (a− 1))



Geometric Progression

• a common summation is
n∑

i=0

ai = a0 + a1 + a2 + · · ·+ an

• what is a closed form?
start with the following expression, and then factor

ai+1 − ai = ai (a− 1)

apply summation to both sides to get

n∑
i=0

(ai+1 − ai ) =
n∑

i=0

(ai (a− 1))



Derivation

n∑
i=0

(ai+1 − ai )︸ ︷︷ ︸ =
n∑

i=0

(ai (a− 1))

an+1 − 1

by a direct application of fact c, the left side collapses



Derivation

n∑
i=0

(ai+1 − ai ) =
n∑

i=0

(ai (a− 1))︸ ︷︷ ︸

(a− 1)
n∑

i=0

ai

by a direct application of fact b, the right side can have the
common coefficient factored out



Derivation

from the previous two slides we have

n∑
i=0

(ai+1 − ai ) =
n∑

i=0

(ai (a− 1))

which gives

an+1 − 1 = (a− 1)
n∑

i=0

ai

and if we ensure a > 1, we can rearrange to get

n∑
i=0

ai =
an+1 − 1
a− 1

and thus we have a closed form for the geometric summation



Loops
• suppose we have a list of numbers and want to print them

[6, 16, 18, 16, 6, 9, 19, 0, 6, 5, 8, 0, 12, 19, 12, 3, 1, 9, 2, 16]

1 void print(const list<unsigned>& values)
2 {
3 for (size_t index = 0; index < list.size(); index++)
4 {
5 cout << list.at(index) << endl;
6 }
7 }

• how many times does the cout statement execute?

• there are two flavors of for loop headers:
1: for (index = lower; index < upper; index++)
2: for (index = lower; index <= upper; index++)
• the number of body iterations:

• type 1: upper − lower
• type 2: upper − lower + 1



Nested Loops

• suppose we have a 2-dimensional matrix of values and need to
print them

1 void print(const Matrix<unsigned>& values)
2 {
3 for (size_t row = 0; row < values.numrows(); row++)
4 {
5 for (size_t col = 0; col < values.numcols(); col++)
6 {
7 cout << values.at(row, col) << ' ';
8 }
9 cout << endl;

10 }
11 }

• if the number of rows is n and the number of columns is m, so
that the matrix is an n ×m grid, and cout executes exactly
once for each value in the grid, then cout must execute n ×m
times



Nested Loops

• suppose we have a list of numbers and need to count how
many times a value earlier in the list is larger than a value later
in the list
• for example, looking at the first 6, it is larger than 0, 5, 0, 3,

1, and 2

[6, 16, 18, 16, 6, 9, 19, 0, 6, 5, 8, 0, 12, 19, 12, 3, 1, 9, 2, 16]



Nested Loops

[6, 16, 18, 16, 6, 9, 19, 0, 6, 5, 8, 0, 12, 19, 12, 3, 1, 9, 2, 16]

1 unsigned count_larger(const list<unsigned>& values)
2 {
3 unsigned count = 0;
4 for (size_t outer = 0; outer < values.size() - 1; outer++)
5 {
6 for (size_t inner = outer + 1; inner < values.size(); inner++)
7 {
8 if (values.at(outer) > values.at(inner))
9 {

10 count++;
11 }
12 }
13 }
14 return count;
15 }

• how many times does the comparison on line 8 execute?



Nested Loops

1 unsigned count_larger(const list<unsigned>& values) // values.size() = 20
2 {
3 unsigned count = 0;
4 for (size_t outer = 0; outer < values.size() - 1; outer++)
5 {
6 for (size_t inner = outer + 1; inner < values.size(); inner++)
7 {
8 if (values.at(outer) > values.at(inner))
9 {

10 count++;
11 }

• how many times does outer loop execute?

19 times
• when outer loop is 0, inner loop is
for (i = 1; i < 20; i++)
• how many times does the inner loop execute? 20− 1 = 19



Nested Loops

1 unsigned count_larger(const list<unsigned>& values) // values.size() = 20
2 {
3 unsigned count = 0;
4 for (size_t outer = 0; outer < values.size() - 1; outer++)
5 {
6 for (size_t inner = outer + 1; inner < values.size(); inner++)
7 {
8 if (values.at(outer) > values.at(inner))
9 {

10 count++;
11 }

• how many times does outer loop execute? 19 times
• when outer loop is 0, inner loop is
for (i = 1; i < 20; i++)
• how many times does the inner loop execute?

20− 1 = 19



Nested Loops

1 unsigned count_larger(const list<unsigned>& values) // values.size() = 20
2 {
3 unsigned count = 0;
4 for (size_t outer = 0; outer < values.size() - 1; outer++)
5 {
6 for (size_t inner = outer + 1; inner < values.size(); inner++)
7 {
8 if (values.at(outer) > values.at(inner))
9 {

10 count++;
11 }

• how many times does outer loop execute? 19 times
• when outer loop is 0, inner loop is
for (i = 1; i < 20; i++)
• how many times does the inner loop execute? 20− 1 = 19



Nested Loops

1 unsigned count_larger(const list<unsigned>& values)
2 {
3 unsigned count = 0;
4 for (size_t outer = 0; outer < values.size() - 1; outer++)
5 {
6 for (size_t inner = outer + 1; inner < values.size(); inner++)
7 {
8 if (values.at(outer) > values.at(inner))
9 {

10 count++;
11 }

• when outer is 1, what are the inner values and how many
iterations?

for (i = 2; i < 20; i++) runs 18 times



Nested Loops

1 unsigned count_larger(const list<unsigned>& values)
2 {
3 unsigned count = 0;
4 for (size_t outer = 0; outer < values.size() - 1; outer++)
5 {
6 for (size_t inner = outer + 1; inner < values.size(); inner++)
7 {
8 if (values.at(outer) > values.at(inner))
9 {

10 count++;
11 }

• when outer is 1, what are the inner values and how many
iterations?
for (i = 2; i < 20; i++) runs 18 times



Nested Loops
1 unsigned count_larger(const list<unsigned>& values)
2 {
3 unsigned count = 0;
4 for (size_t outer = 0; outer < values.size() - 1; outer++)
5 {
6 for (size_t inner = outer + 1; inner < values.size(); inner++)
7 {
8 if (values.at(outer) > values.at(inner))
9 {

10 count++;
11 }

we can make a table

outer inner start inner< #iterations

0 1 20 19
1 2 20 18
2 3 20 17
3 4 20 16

...
18 19 20 1



Nested Loops
outer inner start inner< #iterations

0 1 20 19
1 2 20 18
2 3 20 17
3 4 20 16

...
18 19 20 1

• what is the total number of inner loop body executions?
• remember, n = 20

n−1∑
k=1

k =
(n − 1)n

2

= 190



Nested Loops
outer inner start inner< #iterations

0 1 20 19
1 2 20 18
2 3 20 17
3 4 20 16

...
18 19 20 1

• what is the total number of inner loop body executions?
• remember, n = 20

n−1∑
k=1

k =
(n − 1)n

2

= 190



Counting Operations

• the total number of inner loop body executions

n−1∑
k=1

k =
(n − 1)n

2

• as we discussed in section 5.1, we use the number of
operations as a measure of the time consumed when an
algorithm executes
• we use the expression T (n) to indicate the number of

operations performed by an algorithm (the T stands for time)
• thus for the count_larger algorithm, we have

T (n) =
(n − 1)n

2



Generalize

1 void foo(unsigned n)
2 {
3 for (unsigned outer = 0; outer < n; outer++)
4 {
5 for (unsigned inner = outer + 1; inner < n; inner++)
6 {
7 bar();
8 }
9 }

10 }

• suppose every time bar() executes, three operations of a
specific type are performed
• find a closed form for the total number of these operations

performed for a given n

• note the bounds are slightly different from the example above



Counting bar()
1 void foo(unsigned n)
2 {
3 for (unsigned outer = 0; outer < n; outer++)
4 {
5 for (unsigned inner = outer + 1; inner < n; inner++)
6 {
7 bar();
8 }
9 }

10 }

outer inner start inner< #operations

0 1 n 3(n − 1)
1 2 n 3(n − 2)
2 3 n 3(n − 3)
3 4 n 3(n − 4)

...
n − 2 n − 1 n 3(n − (n − 1))
n − 1 n n 3(n − n)



Counting bar()
outer inner start inner< #operations

0 1 n 3(n − 1)
1 2 n 3(n − 2)

...
n − 1 n n 3(n − n)

T (n) =
n−1∑
i=0

3i

= 3
(n − 1)n

2
for n = 20, for example we have

T (20) = 3
(20− 1)20

2
= 570



Count bar() version 2

1 void foo(unsigned n)
2 {
3 for (unsigned outer = 0; outer < n; outer++)
4 {
5 for (unsigned inner = 0; inner < 2 * outer; inner++)
6 {
7 bar();
8 }
9 }

10 }

• again bar() executes three specific operations
• find a closed form for the number of these operations

performed for a given n

• make a table
• if it’s confusing for n, make it for an example specific example

value, e.g., 10



Count bar() version 2
1 void foo(unsigned n)
2 {
3 for (unsigned outer = 0; outer < n; outer++)
4 {
5 for (unsigned inner = 0; inner < 2 * outer; inner++)
6 {
7 bar();
8 }
9 }

10 }

outer inner start inner< #operations

0 0 0 3(0) = 6(outer)
1 0 2 3(2) = 6(outer)
2 0 4 3(4) = 6(outer)
3 0 6 3(6) = 6(outer)

...
n − 2 0 2(n − 2) 6(n − 2)
n − 1 0 2(n − 1) 6(n − 1)



Count bar() version 2
1 void foo(unsigned n)
2 {
3 for (unsigned outer = 0; outer < n; outer++)
4 {
5 for (unsigned inner = 0; inner < 2 * outer; inner++)
6 {
7 bar();
8 }
9 }

10 }

outer inner start inner< #operations

0 0 0 3(0) = 6(outer)
1 0 2 3(2) = 6(outer)
2 0 4 3(4) = 6(outer)
3 0 6 3(6) = 6(outer)

...
n − 2 0 2(n − 2) 6(n − 2)
n − 1 0 2(n − 1) 6(n − 1)



Count bar() version 2
outer inner start inner< #operations

0 0 0 3(0) = 6(outer)
1 0 2 3(2) = 6(outer)
2 0 4 3(4) = 6(outer)
3 0 6 3(6) = 6(outer)

...
n − 2 0 2(n − 2) 6(n − 2)
n − 1 0 2(n − 1) 6(n − 1)

T (n) =
n−1∑
i=0

6i

T (n) = 6
(n − 1)n

2
= 3(n2 − n)



Count bar() version 2
outer inner start inner< #operations

0 0 0 3(0) = 6(outer)
1 0 2 3(2) = 6(outer)
2 0 4 3(4) = 6(outer)
3 0 6 3(6) = 6(outer)

...
n − 2 0 2(n − 2) 6(n − 2)
n − 1 0 2(n − 1) 6(n − 1)

T (n) =
n−1∑
i=0

6i

T (n) = 6
(n − 1)n

2
= 3(n2 − n)


