## Summations

Class 36

## Introduction

- Section 4.4 was about using proof by induction to prove that a closed form is correct
- this section is about techniques for finding closed forms


## Closed Forms



- a closed form is an expression that is not a symbolic recipe
- that does not have ellipses
- that can be computed directly
( $\operatorname{AT}_{\mathrm{E}}^{\mathrm{E}} \mathrm{X}: \backslash$ sum_\{i=1\}~n i)


## Working With Summations

- box 5.2.1 on page 298 has some "facts"
- fact a: sum of a constant

$$
\sum_{i=m}^{n} c=c(n-m+1)
$$

- $c$ is a constant
- $m \leq n, m, n \in \mathrm{~N}$
- example: $\sum_{i=5}^{10} 2$ (notice how inline summation is formatted)

$$
\begin{aligned}
\sum_{i=5}^{10} 2 & =2(10-5+1) \\
& =12
\end{aligned}
$$

## Constant Coefficient

- fact $b$ : each term has an constant coefficient that can be factored out

$$
\sum_{i=m}^{n} c a_{i}=c \sum_{i=m}^{n} a_{i}
$$

- example

$$
\begin{aligned}
\sum_{i=1}^{10} 4 i & =4 \sum_{i=1}^{10} i \\
& =4 \frac{10(10+1)}{2} \\
& =220
\end{aligned}
$$

## Collapsing Sums

- fact c : each element of the series is composed of two terms, adding a new term but subtracting the term from last time
- this happens more often than you might think

$$
\begin{gathered}
\sum_{i=1}^{n}\left(a_{i}-a_{i-1}\right)=a_{n}-a_{0} \\
\begin{aligned}
\sum_{i=1}^{8}(i-(i-1)) & =(1-0)+(2-1)+\cdots+(8-7) \\
& =8-7+7-6+\cdots+2-1+1-0 \\
& =8-0 \\
& =8
\end{aligned}
\end{gathered}
$$

## Summation of Added Terms

- fact d: each element of the summation is a pair of terms, added together

$$
\begin{aligned}
& \sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{n} a_{i}+\sum_{i=m}^{n} b_{i} \\
& \begin{aligned}
& 10 \\
& \sum_{i=1}(2 i+3 i)=\sum_{i=1}^{10} 2 i+\sum_{i=1}^{10} 3 i \\
&=110+165 \\
&=275
\end{aligned}
\end{aligned}
$$

- facts e-g are used less often


## Geometric Progression

- a common summation is

$$
\sum_{i=0}^{n} a^{i}=a^{0}+a^{1}+a^{2}+\cdots+a^{n}
$$

- what is a closed form?
start with the following expression, and then factor

$$
a^{i+1}-a^{i}=a^{i}(a-1)
$$

## Geometric Progression

- a common summation is

$$
\sum_{i=0}^{n} a^{i}=a^{0}+a^{1}+a^{2}+\cdots+a^{n}
$$

- what is a closed form?
start with the following expression, and then factor

$$
a^{i+1}-a^{i}=a^{i}(a-1)
$$

apply summation to both sides to get

$$
\sum_{i=0}^{n}\left(a^{i+1}-a^{i}\right)=\sum_{i=0}^{n}\left(a^{i}(a-1)\right)
$$

## Derivation

$$
\underbrace{\sum_{i=0}^{n}\left(a^{i+1}-a^{i}\right)}_{a^{n+1}-1}=\sum_{i=0}^{n}\left(a^{i}(a-1)\right)
$$

by a direct application of fact $c$, the left side collapses

## Derivation

$$
\sum_{i=0}^{n}(a^{\left(a^{+1}-a^{\prime}\right)}=\underbrace{}_{(a-1) \sum_{i=0}^{n} a_{i=0}^{n}\left(a^{(a-1 a-1))}\right.}
$$

by a direct application of fact $b$, the right side can have the common coefficient factored out

## Derivation

from the previous two slides we have

$$
\sum_{i=0}^{n}\left(a^{i+1}-a^{i}\right)=\sum_{i=0}^{n}\left(a^{i}(a-1)\right)
$$

which gives

$$
a^{n+1}-1=(a-1) \sum_{i=0}^{n} a^{i}
$$

and if we ensure $a>1$, we can rearrange to get

$$
\sum_{i=0}^{n} a^{i}=\frac{a^{n+1}-1}{a-1}
$$

and thus we have a closed form for the geometric summation

## Loops

- suppose we have a list of numbers and want to print them

$$
[6,16,18,16,6,9,19,0,6,5,8,0,12,19,12,3,1,9,2,16]
$$

```
void print(const list<unsigned>& values)
{
    for (size_t index = 0; index < list.size(); index++)
    {
        cout << list.at(index) << endl;
    }
}
```

- how many times does the cout statement execute?
- there are two flavors of for loop headers:

1: for (index = lower; index < upper; index++)
2: for (index = lower; index <= upper; index++)

- the number of body iterations:
- type 1: upper - lower
- type 2: upper - lower +1


## Nested Loops

- suppose we have a 2-dimensional matrix of values and need to print them

```
void print(const Matrix<unsigned>& values)
{
    for (size_t row = 0; row < values.numrows(); row++)
    {
        for (size_t col = 0; col < values.numcols(); col++)
        {
            cout << values.at(row, col) << ' ';
        }
        cout << endl;
    }
}
```

- if the number of rows is $n$ and the number of columns is $m$, so that the matrix is an $n \times m$ grid, and cout executes exactly once for each value in the grid, then cout must execute $n \times m$ times


## Nested Loops

- suppose we have a list of numbers and need to count how many times a value earlier in the list is larger than a value later in the list
- for example, looking at the first 6 , it is larger than $0,5,0,3$, 1 , and 2

$$
[6,16,18,16,6,9,19,0,6,5,8,0,12,19,12,3,1,9,2,16]
$$

## Nested Loops

```
    [6, 16, 18, 16, 6, 9, 19, 0, 6, 5, 8, 0, 12, 19, 12, 3, 1, 9, 2, 16]
unsigned count_larger(const list<unsigned>& values)
{
    unsigned count = 0;
    for (size_t outer = 0; outer < values.size() - 1; outer++)
    {
        for (size_t inner = outer + 1; inner < values.size(); inner++)
        {
            if (values.at(outer) > values.at(inner))
            {
                count++;
            }
        }
    }
    return count;
}
```

- how many times does the comparison on line 8 execute?


## Nested Loops

```
unsigned count_larger(const list<unsigned>& values) // values.size() = 20
{
    unsigned count = 0;
    for (size_t outer = 0; outer < values.size() - 1; outer++)
    {
        for (size_t inner = outer + 1; inner < values.size(); inner++)
        {
            if (values.at(outer) > values.at(inner))
        {
            count++;
        }
```

- how many times does outer loop execute?


## Nested Loops

```
unsigned count_larger(const list<unsigned>& values) // values.size() = 20
{
    unsigned count = 0;
    for (size_t outer = 0; outer < values.size() - 1; outer++)
    {
        for (size_t inner = outer + 1; inner < values.size(); inner++)
        {
            if (values.at(outer) > values.at(inner))
        {
            count++;
        }
```

- how many times does outer loop execute? 19 times
- when outer loop is 0 , inner loop is for (i = 1; i < 20; i++)
- how many times does the inner loop execute?


## Nested Loops

```
unsigned count_larger(const list<unsigned>& values) // values.size() = 20
{
    unsigned count = 0;
    for (size_t outer = 0; outer < values.size() - 1; outer++)
    {
        for (size_t inner = outer + 1; inner < values.size(); inner++)
        {
            if (values.at(outer) > values.at(inner))
        {
            count++;
        }
```

- how many times does outer loop execute? 19 times
- when outer loop is 0 , inner loop is for (i = 1; i < 20; i++)
- how many times does the inner loop execute? $20-1=19$


## Nested Loops

```
unsigned count_larger(const list<unsigned>& values)
{
    unsigned count = 0;
    for (size_t outer = 0; outer < values.size() - 1; outer++)
    {
        for (size_t inner = outer + 1; inner < values.size(); inner++)
        {
            if (values.at(outer) > values.at(inner))
            {
            count++;
        }
```

- when outer is 1 , what are the inner values and how many iterations?


## Nested Loops

```
unsigned count_larger(const list<unsigned>& values)
{
    unsigned count = 0;
    for (size_t outer = 0; outer < values.size() - 1; outer++)
    {
        for (size_t inner = outer + 1; inner < values.size(); inner++)
        {
            if (values.at(outer) > values.at(inner))
            {
            count++;
        }
```

- when outer is 1 , what are the inner values and how many iterations?
for (i = 2; i < 20; i++) runs 18 times


## Nested Loops

```
unsigned count_larger(const list<unsigned>& values)
{
    unsigned count = 0;
    for (size_t outer = 0; outer < values.size() - 1; outer++)
    {
        for (size_t inner = outer + 1; inner < values.size(); inner++)
        {
            if (values.at(outer) > values.at(inner))
            {
            count++;
        }
```

we can make a table outer inner start inner< \#iterations

| 0 | 1 | 20 | 19 |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 20 | 18 |
| 2 | 3 | 20 | 17 |
| 3 | 4 | 20 | 16 |
|  | $\vdots$ |  |  |
| 18 | 19 | 20 | 1 |

## Nested Loops

| outer | inner start | inner $<$ | \#iterations |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 20 | 19 |
| 1 | 2 | 20 | 18 |
| 2 | 3 | 20 | 17 |
| 3 | 4 | 20 | 16 |
|  | $\vdots$ |  |  |
| 18 | 19 | 20 | 1 |

- what is the total number of inner loop body executions?
- remember, $n=20$


## Nested Loops

| outer | inner start | inner $<$ | \#iterations |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 20 | 19 |
| 1 | 2 | 20 | 18 |
| 2 | 3 | 20 | 17 |
| 3 | 4 | 20 | 16 |
|  | $\vdots$ |  |  |
| 18 | 19 | 20 | 1 |

- what is the total number of inner loop body executions?
- remember, $n=20$

$$
\begin{aligned}
\sum_{k=1}^{n-1} k & =\frac{(n-1) n}{2} \\
& =190
\end{aligned}
$$

## Counting Operations

- the total number of inner loop body executions

$$
\sum_{k=1}^{n-1} k=\frac{(n-1) n}{2}
$$

- as we discussed in section 5.1, we use the number of operations as a measure of the time consumed when an algorithm executes
- we use the expression $T(n)$ to indicate the number of operations performed by an algorithm (the T stands for time)
- thus for the count_larger algorithm, we have

$$
T(n)=\frac{(n-1) n}{2}
$$

## Generalize

```
void foo(unsigned n)
{
    for (unsigned outer = 0; outer < n; outer++)
    {
        for (unsigned inner = outer + 1; inner < n; inner++)
        {
            bar();
        }
    }
}
```

- suppose every time bar() executes, three operations of a specific type are performed
- find a closed form for the total number of these operations performed for a given $n$
- note the bounds are slightly different from the example above


## Counting bar()

```
void foo(unsigned n)
{
    for (unsigned outer = 0; outer < n; outer++)
    {
        for (unsigned inner = outer + 1; inner < n; inner++)
        {
            bar();
        }
    }
}
```

outer inner start inner< \#operations

| 0 | 1 | $n$ | $3(n-1)$ |
| :---: | :---: | :---: | :---: |
| 1 | 2 | $n$ | $3(n-2)$ |
| 2 | 3 | $n$ | $3(n-3)$ |
| 3 | 4 | $n$ | $3(n-4)$ |
|  | $\vdots$ |  |  |
| $n-2$ | $n-1$ | $n$ | $3(n-(n-1))$ |
| $n-1$ | $n$ | $n$ | $3(n-n)$ |

## Counting bar ()

outer inner start inner< \#operations

| 0 | 1 | $n$ | $3(n-1)$ |
| :---: | :---: | :---: | :---: |
| 1 | 2 | $n$ | $3(n-2)$ |
| $n-1$ | $\vdots$ |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  | $=3(n)=\sum_{i=0}^{n-1} 3 i$ |  |  |
|  |  |  |  |

for $n=20$, for example we have

$$
\begin{aligned}
T(20) & =3 \frac{(20-1) 20}{2} \\
& =570
\end{aligned}
$$

## Count bar() version 2

```
void foo(unsigned n)
{
    for (unsigned outer = 0; outer < n; outer++)
    {
        for (unsigned inner = 0; inner < 2 * outer; inner++)
        {
                bar();
        }
    }
}
```

- again bar () executes three specific operations
- find a closed form for the number of these operations performed for a given $n$
- make a table
- if it's confusing for $n$, make it for an example specific example value, e.g., 10


## Count bar() version 2

```
void foo(unsigned n)
{
    for (unsigned outer = 0; outer < n; outer++)
    {
        for (unsigned inner = 0; inner < 2 * outer; inner++)
        {
            bar();
        }
    }
}
```

outer inner start inner< \#operations

## Count bar() version 2

```
void foo(unsigned n)
{
    for (unsigned outer = 0; outer < n; outer++)
    {
        for (unsigned inner = 0; inner < 2 * outer; inner++)
        {
            bar();
        }
    }
}
outer inner start inner< #operations
\begin{tabular}{cccc}
\hline 0 & 0 & 0 & \(3(0)=6\) (outer) \\
1 & 0 & 2 & \(3(2)=6\) (outer) \\
2 & 0 & 4 & \(3(4)=6\) (outer) \\
3 & 0 & 6 & \(3(6)=6\) (outer) \\
& \(\vdots\) & & \\
\(n-2\) & 0 & \(2(n-2)\) & \(6(n-2)\) \\
\(n-1\) & 0 & \(2(n-1)\) & \(6(n-1)\)
\end{tabular}
```


## Count bar() version 2

outer inner start inner $<$ \#operations

| 0 | 0 | 0 | $3(0)=6$ (outer) |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 2 | $3(2)=6$ (outer) |
| 2 | 0 | 4 | $3(4)=6$ (outer) |
| 3 | 0 | 6 | $3(6)=6$ (outer) |
|  | $\vdots$ |  |  |
| $n-2$ | 0 | $2(n-2)$ | $6(n-2)$ |
| $n-1$ | 0 | $2(n-1)$ | $6(n-1)$ |

## Count bar() version 2

outer inner start inner< \#operations

| 0 | 0 | 0 | $3(0)=6$ (outer) |
| :---: | :---: | :---: | :---: |
| 1 | 0 | 2 | $3(2)=6$ (outer) |
| 2 | 0 | 4 | $3(4)=6$ (outer) |
| 3 | 0 | 6 | $3(6)=6$ (outer) |
| $n-2$ | $\vdots$ |  |  |
| $n-1$ | 0 | $2(n-2)$ | $6(n-2)$ |
|  | $T(n)$ $=\sum_{i=0}^{n-1} 6 i$ |  |  |
|  |  |  |  |
|  |  |  |  |
|  | $=3(n)=6 \frac{(n-1) n}{2}$ |  |  |
|  | $=3\left(n^{2}-n\right)$ |  |  |

