Combinations and Permutations

Class 39

Introduction

- the big picture is counting operations performed as an algorithm executes
- counting things requires thinking about permutations and combinations
- permutation: an arrangement in which order matters e.g., lists, strings
- combination: an arrangement in which order does not matter e.g., sets

Permutations

- permutations are arrangements of things: orderings or re-orderings
- let $S=\{a, b, c\}$
- how many ways to order the three letters?
- $a b c, a c b, b a c, b c a, c a b, c b a$ there are six ways
- there are 3 ways to choose the first letter
- for each of those 3 way, there are 2 ways to choose the second letter
- for each of the 3×2 ways of choosing the first two, there is 1 way to choose the last letter
- therefore there are $3 \times 2 \times 1=3$! permutations of three distinct things

Permutations

- let there be a set of n distinct things and we

1. select r of them (without replacement) and then
2. generate all permutations of the r selected things

- how many different ways to do steps 1 and 2 ?
- the total number of different permutations of r things chosen from a set of n things is

$$
P(n, r)=\frac{n!}{(n-r)!}
$$

Combinations

- we have seen that there are 3 ! $=6$ ways to permute, or arrange, 3 things a, b, c
- but if we combine 3 things into one set where order doesn't matter, we just get the single combination set $\{a, b, c\}$
- so, there are fewer combinations than permutations

Combinations

- let there be a set of n distinct things and we

1. select r of them (without replacement) and combine them into a set

- the total number of different combinations of r things chosen from a set of n things is

$$
C(n, r)=\frac{n!}{r!(n-r)!}
$$

- comparing this to $P(n, r)$, you see that this denominator is bigger, so the number of combinations is smaller
- $C(n, r)$ is also written as $\binom{n}{r}$ and pronounced as " n choose r " (ATEX: $\$ \backslash$ binom\{n\}\{r\}\$)

Bags

- we have not talked very much about bags so far in this course
- they have been present in the text, but we've mostly skipped the things that include them

Bag

A bag, also known as a multiset, is an unordered collection of elements in which repeated elements are allowed.

- every set is also a bag
- a bag without repeated elements is a set

Without Replacement

- the above discussion of combinations and permutations was strictly in the context of sets
- they have no repeated elements, because you can only take the same element out of a set once, not twice
- the term for this is without replacement

Permutations of a Bag

- but suppose we have a bag:

$$
B=[a, a, b, b, c, c]
$$

nine 2-element permutations of this bag exist:

$$
a a, a b, a c, b a, b b, b c, c a, c b, c c
$$

- the number of distinct permutations of size r taken from a bag with n distinct elements is n^{r}
- in this example, $n=3$ and $r=2$, so $n^{r}=3^{2}=9$
- note that even though there are two b 's in the bag, there's only one permutation $a b$ because we can't tell the two b 's apart
- if we could tell them apart, e.g., b_{1} and b_{2}, then we would have two distinct permutations $a b_{1}$ and $a b_{2}$
- when we say an element is repeated, it means the repeats cannot be distinguished

Permutations of a Bag

- generalizing, let B be a bag with n total elements and i distinct elements
- let m_{1} be the number of occurrences of one of the i distinct elements
- let m_{2} be the number of occurrences of another of the i distinct elements, and so on, up to m_{i}
- then the number of (distinct) permutations of the n elements of B is

$$
\frac{n!}{m_{1}!\times m_{2}!\times \cdots \times m_{i}!}
$$

Permutations of a Bag

- how many permutations of B 's elements are there?

\[

\]

- thus there are 10 permutations:

$$
\frac{5!}{2!3!}=10
$$

Combinations With Replacement

- in the earlier discussion, combinations are sets of things
- but with repeated elements, combinations become bags of things
- the number of k-element bags chosen from an n-element set is

$$
\binom{n+k-1}{k}
$$

Combinations with Replacement

- let there be a jar filled with a collection of many pennies, nickels, and dimes
- the number of each type of coin is essentially unlimited
- how many different ways are there of selecting 5 coins at random from the jar?
- n represents the number of different types of coin, which is 3 (penny, nickel, dime)
- k is the number of coins being selected, which is 5

$$
\begin{aligned}
\binom{3+5-1}{5} & =\binom{7}{3} \\
& =35
\end{aligned}
$$

Combinations with Replacement

- another way of thinking about this is to let there be exactly 3 coins in the jar instead of an unlimited number
- then, for 5 iterations, a coin is chosen from the jar, recorded, and then returned to the jar
- that is why this is selection with replacement

