
Recurrence Relations

Class 40

Definitions

• you are very familiar with function definitions in math
• a function is defined with an algebraic rule

f (x) = x2 − 3x + 2

• it can be translated directly into a C++ function

double f(double x)
{

return x * x - 3 * x + 2;
}

Sequences

• there is another type of definition
• commonly used to define sequences of values
• the Fibonacci sequence can be listed as {1, 1, 2, 3, 5, . . .}
• and it can also be defined by a rule

f (n) = f (n − 1) + f (n − 2) given f (0) = f (1) = 1

• this type of rule is called a recurrence relation
• with initial conditions

Recurrence Relations

• a recurrence relation is an equation or inequality
• defines an arbitrary element in a sequence in terms of one or

more of its predecessors

• a recursive algorithm implements a recurrence relation
• a recurrence relation describes a recursive algorithm

Recurrence Relations

• a recurrence relation is an equation or inequality
• defines an arbitrary element in a sequence in terms of one or

more of its predecessors

• a recursive algorithm implements a recurrence relation
• a recurrence relation describes a recursive algorithm

Recurrence to Recursion

• recurrence relations translate into code
• the initial conditions turn into base cases
• the code has recursive calls

unsigned fib(unsigned n)
{

if (n == 0 || n == 1)
{

return 1;
}
return fib(n - 1) + fib(n - 2);

}

Solving Recurrence Relations

• to solve a recurrence relation means to give a formulation for
an arbitrary element in a sequence in terms that does not use
any other elements in the sequence
• the solution is a closed form
• there are many techniques for solving recurrence relations
• we will only look at a couple

Solving by Substitution
Let

T (n) = T (n − 1) + n given T (0) = 0

• off to the side, replace every occurrence of n with n − 1
• we can do this because n is arbitrary
• this substitution gives us

T (n − 1) = T ((n − 1)− 1) + (n − 1)
= T (n − 2) + (n − 1)

• now substitute this expression for T (n − 1) back into the
original formulation, to give

T (n) = T (n − 2) + (n − 1) + n

Solving by Substitution
Let

T (n) = T (n − 1) + n given T (0) = 0

• off to the side, replace every occurrence of n with n − 1
• we can do this because n is arbitrary
• this substitution gives us

T (n − 1) = T ((n − 1)− 1) + (n − 1)
= T (n − 2) + (n − 1)

• now substitute this expression for T (n − 1) back into the
original formulation, to give

T (n) = T (n − 2) + (n − 1) + n

Solving by Substitution
Let

T (n) = T (n − 1) + n given T (0) = 0

• off to the side, replace every occurrence of n with n − 1
• we can do this because n is arbitrary
• this substitution gives us

T (n − 1) = T ((n − 1)− 1) + (n − 1)
= T (n − 2) + (n − 1)

• now substitute this expression for T (n − 1) back into the
original formulation, to give

T (n) = T (n − 2) + (n − 1) + n

Solving by Substitution

• using the original formulation, off to the side substitute every
occurrence of n by n − 2 to get

T (n − 2) = T (n − 3) + (n − 2)

• and use this expression for T (n − 2) in the last expression of
the previous slide

T (n) = T (n − 2) + (n − 1) + n

= T (n − 3) + (n − 2) + (n − 1) + n

Solving by Substitution

• continuing the series, we have

T (n) = T (n − 1) + n

= T (n − 2) + (n − 1) + n

= T (n − 3) + (n − 2) + (n − 1) + n

...

• how long can this process go on?

Solving by Substitution
• the series ends at the initial condition (base case) T (0) = 0

T (n) = T (n − 1) + n

= T (n − 2) + (n − 1) + n

= T (n − 3) + (n − 2) + (n − 1) + n

...
= T (n − (n − 1)) + (n − (n − 2)) + (n − (n − 3)) + · · ·

+ (n − 1) + n

= T (n − n) + (n − (n − 1)) + (n − (n − 2)) + (n − (n − 3))
+ · · ·+ (n − 1) + n

= 0+ 1+ 2+ · · ·+ n

=
n(n + 1)

2

Analysis

• thus we have the closed form

T (n) = T (n − 1) + n given T (0) = 0

=
n(n + 1)

2

• the solution of a recurrence relation is identical to the analysis
of its matching recursive algorithm
• we analyze recursive algorithms by

• writing the recurrence relation for the algorithm
• solving that recurrence relation

Solving by Cancellation

• a second technique for solving recurrence relations is
cancellation
• I find this much more confusing that substitution, and no more

enlightening
• if you like it, feel free to use it

• I have used:

T (n) = T (n − 1) + n given T (0) = 0

your author instead writes:

r0 = 0,
rn = rn−1 + n.

Analyzing Recursive Functions

• substitution only works when there is a single recursive term,
and it differs in position by exactly one n→ n − 1
• substitution, for example cannot be used to find a closed form

for the nth Fibonacci number
• many recurrence relations in computer science can be solved

by substitution
• but many are of a different form

Binary Search

• binary search is a classic recursive algorithm
• a recursive algorithm consists of

1. one or more checks for base case(s)
2. some amount of local work
3. one or more recursive calls

Binary Search

2 3 5 11 17 23 29

112 3 5 17 23 29

1. if the range of elements is empty, return not-found sentinel

2. divide the range of elements to search into 3:
2.1 the very middle element
2.2 the elements to the left of middle
2.3 the elements to the right of middle

3. if the searched-for value is the middle element, you’ve found it
and you’re done

4. else if the searched-for value is smaller than the middle
element, repeat step 1 on the left half

5. else repeat step 1 on the right half

Binary Search

2 3 5 11 17 23 2911

2 3 5 17 23 29

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3:

2.1 the very middle element

2.2 the elements to the left of middle
2.3 the elements to the right of middle

3. if the searched-for value is the middle element, you’ve found it
and you’re done

4. else if the searched-for value is smaller than the middle
element, repeat step 1 on the left half

5. else repeat step 1 on the right half

Binary Search

2 3 5 11 17 23 29112 3 5

17 23 29

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3:

2.1 the very middle element
2.2 the elements to the left of middle

2.3 the elements to the right of middle

3. if the searched-for value is the middle element, you’ve found it
and you’re done

4. else if the searched-for value is smaller than the middle
element, repeat step 1 on the left half

5. else repeat step 1 on the right half

Binary Search

2 3 5 11 17 23 29112 3 5 17 23 29

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3:

2.1 the very middle element
2.2 the elements to the left of middle
2.3 the elements to the right of middle

3. if the searched-for value is the middle element, you’ve found it
and you’re done

4. else if the searched-for value is smaller than the middle
element, repeat step 1 on the left half

5. else repeat step 1 on the right half

Binary Search

2 3 5 11 17 23 29112 3 5 17 23 29

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3:

2.1 the very middle element
2.2 the elements to the left of middle
2.3 the elements to the right of middle

3. if the searched-for value is the middle element, you’ve found it
and you’re done

4. else if the searched-for value is smaller than the middle
element, repeat step 1 on the left half

5. else repeat step 1 on the right half

Binary Search

2 3 5 11 17 23 29112 3 5 17 23 29

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3:

2.1 the very middle element
2.2 the elements to the left of middle
2.3 the elements to the right of middle

3. if the searched-for value is the middle element, you’ve found it
and you’re done

4. else if the searched-for value is smaller than the middle
element, repeat step 1 on the left half

5. else repeat step 1 on the right half

Binary Search

2 3 5 11 17 23 29112 3 5 17 23 29

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3:

2.1 the very middle element
2.2 the elements to the left of middle
2.3 the elements to the right of middle

3. if the searched-for value is the middle element, you’ve found it
and you’re done

4. else if the searched-for value is smaller than the middle
element, repeat step 1 on the left half

5. else repeat step 1 on the right half

Binary Search

look at code

Binary Search Analysis

base case determination
line 5: 1 operation
line 6: 3 operations

local work
line 8: 3 operations
lines 9 and 13: 1 operation
line 11 or 15: 1 operation

total: 9 operations

Binary Search Analysis

• how many recursive calls?

• either line 9 or line 13, but never both
• therefore one recursive call

• how big is the input for the recursive call?

• the size of the range is half the size of the original

• can the algorithm end early?

• yes, because of line 19 return mid;

Binary Search Analysis

• how many recursive calls?
• either line 9 or line 13, but never both
• therefore one recursive call

• how big is the input for the recursive call?

• the size of the range is half the size of the original

• can the algorithm end early?

• yes, because of line 19 return mid;

Binary Search Analysis

• how many recursive calls?
• either line 9 or line 13, but never both
• therefore one recursive call

• how big is the input for the recursive call?
• the size of the range is half the size of the original

• can the algorithm end early?

• yes, because of line 19 return mid;

Binary Search Analysis

• how many recursive calls?
• either line 9 or line 13, but never both
• therefore one recursive call

• how big is the input for the recursive call?
• the size of the range is half the size of the original

• can the algorithm end early?
• yes, because of line 19 return mid;

Binary Search Analysis

• running this algorithm thus involves
• ≤ because the whole process might end early
• 9 operations of local work
• 1 recursive call on a range of size n

2

T (n) ≤ aT
(n
b

)
+ knd

≤ 1T
(n
2

)
+ 9n0

Binary Search Analysis

• running this algorithm thus involves
• ≤ because the whole process might end early
• 9 operations of local work
• 1 recursive call on a range of size n

2

T (n) ≤ aT
(n
b

)
+ knd

≤ 1T
(n
2

)
+ 9n0

Binary Search Analysis

• running this algorithm thus involves
• ≤ because the whole process might end early
• 9 operations of local work
• 1 recursive call on a range of size n

2

T (n) ≤ aT
(n
b

)
+ knd

≤ 1T
(n
2

)
+ 9n0

Base Case

• what is the base case for binary search?

• the size of the range is 0
• the comparison on line 6 fails

line 5: 1 operation
line 6: 3 operations

total: 4 operations

therefore, T (0) = 4

Base Case

• what is the base case for binary search?
• the size of the range is 0
• the comparison on line 6 fails

line 5: 1 operation
line 6: 3 operations

total: 4 operations

therefore, T (0) = 4

• using T (0) instead of T (1), on page 379, your textbook
presents (using cancellation) this formula for T (n):

T (n) = akT (0) +
k−1∑
i=0

ai f
(n

bi

)
• in this case, we have a = 1, b = 2, f (n) = 9n0, and T (0) = 4
• we also know that 2k = n which means k = log2 n

• this gives

T (n) = 4 · 1k +
k−1∑
i=0

1i9

= 4+ 9 log2 n

Best Case

• what is the best case?
• we find the searched-for element at the very first spot we

check
line 5: 1 operation
line 6: 3 operations
line 8: 3 operations
lines 9 and 13: 1 operation

• total: 8 operations

Complete Analysis

• putting it all together, for recursive binary search, we have
• best case: 8 operations
• worst case: 4 + 9 log2 n opeations

