Recurrence Relations

Class 40

Definitions

- you are very familiar with function definitions in math
- a function is defined with an algebraic rule

$$
f(x)=x^{2}-3 x+2
$$

- it can be translated directly into a $\mathrm{C}++$ function

```
double f(double x)
{
    return x * x - 3 * x + 2;
}
```


Sequences

- there is another type of definition
- commonly used to define sequences of values
- the Fibonacci sequence can be listed as $\{1,1,2,3,5, \ldots\}$
- and it can also be defined by a rule

$$
f(n)=f(n-1)+f(n-2) \text { given } f(0)=f(1)=1
$$

- this type of rule is called a recurrence relation
- with initial conditions

Recurrence Relations

- a recurrence relation is an equation or inequality
- defines an arbitrary element in a sequence in terms of one or more of its predecessors

Recurrence Relations

- a recurrence relation is an equation or inequality
- defines an arbitrary element in a sequence in terms of one or more of its predecessors
- a recursive algorithm implements a recurrence relation
- a recurrence relation describes a recursive algorithm

Recurrence to Recursion

- recurrence relations translate into code
- the initial conditions turn into base cases
- the code has recursive calls

```
unsigned fib(unsigned n)
{
    if (n == 0 || n == 1)
    {
        return 1;
    }
    return fib(n - 1) + fib(n - 2);
}
```


Solving Recurrence Relations

- to solve a recurrence relation means to give a formulation for an arbitrary element in a sequence in terms that does not use any other elements in the sequence
- the solution is a closed form
- there are many techniques for solving recurrence relations
- we will only look at a couple

Solving by Substitution

Let

$$
T(n)=T(n-1)+n \text { given } T(0)=0
$$

- off to the side, replace every occurrence of n with $n-1$
- we can do this because n is arbitrary
- this substitution gives us

$$
\begin{aligned}
T(n-1) & =T((n-1)-1)+(n-1) \\
& =T(n-2)+(n-1)
\end{aligned}
$$

Solving by Substitution

Let

$$
T(n)=T(n-1)+n \text { given } T(0)=0
$$

- off to the side, replace every occurrence of n with $n-1$
- we can do this becayse n is arbitrary
- this substitution gives us

$$
\begin{aligned}
T(n-1) & =T((n-1)-1)+(n-1) \\
& =T(n-2)+(n-1)
\end{aligned}
$$

- now substitute this expression for $T(n-1)$ back into the original formulation, to give

Solving by Substitution

Let

$$
T(n)=T(n-1)+n \text { given } T(0)=0
$$

- off to the side, replace every occurrence of n with $n-1$
- we can do this becayse n is arbitrary
- this substitution gives us

$$
\begin{aligned}
T(n-1) & =T((n-1)-1)+(n-1) \\
& =T(n-2)+(n-1)
\end{aligned}
$$

- now substitute this expression for $T(n-1)$ back into the original formulation, to give

$$
T(n)=T(n-2)+(n-1)+n
$$

Solving by Substitution

- using the original formulation, off to the side substitute every occurrence of n by $n-2$ to get

$$
T(n-2)=T(n-3)+(n-2)
$$

- and use this expression for $T(n-2)$ in the last expression of the previous slide

$$
\begin{aligned}
T(n) & =T(n-2)+(n-1)+n \\
& =T(n-3)+(n-2)+(n-1)+n
\end{aligned}
$$

Solving by Substitution

- continuing the series, we have

$$
\begin{aligned}
T(n) & =T(n-1)+n \\
& =T(n-2)+(n-1)+n \\
& =T(n-3)+(n-2)+(n-1)+n
\end{aligned}
$$

- how long can this process go on?

Solving by Substitution

- the series ends at the initial condition (base case) $T(0)=0$

$$
\begin{aligned}
T(n)= & T(n-1)+n \\
= & T(n-2)+(n-1)+n \\
= & T(n-3)+(n-2)+(n-1)+n \\
\vdots & \\
= & T(n-(n-1))+(n-(n-2))+(n-(n-3))+\cdots \\
& \quad \quad(n-1)+n \\
= & T(n-n)+(n-(n-1))+(n-(n-2))+(n-(n-3)) \\
& \quad+\cdots+(n-1)+n \\
= & 0+1+2+\cdots+n \\
= & \frac{n(n+1)}{2}
\end{aligned}
$$

Analysis

- thus we have the closed form

$$
\begin{aligned}
T(n) & =T(n-1)+n \text { given } T(0)=0 \\
& =\frac{n(n+1)}{2}
\end{aligned}
$$

- the solution of a recurrence relation is identical to the analysis of its matching recursive algorithm
- we analyze recursive algorithms by
- writing the recurrence relation for the algorithm
- solving that recurrence relation

Solving by Cancellation

- a second technique for solving recurrence relations is cancellation
- I find this much more confusing that substitution, and no more enlightening
- if you like it, feel free to use it
- I have used:

$$
T(n)=T(n-1)+n \text { given } T(0)=0
$$

your author instead writes:

$$
\begin{aligned}
& r_{0}=0 \\
& r_{n}=r_{n-1}+n
\end{aligned}
$$

Analyzing Recursive Functions

- substitution only works when there is a single recursive term, and it differs in position by exactly one $n \rightarrow n-1$
- substitution, for example cannot be used to find a closed form for the nth Fibonacci number
- many recurrence relations in computer science can be solved by substitution
- but many are of a different form

Binary Search

- binary search is a classic recursive algorithm
- a recursive algorithm consists of

1. one or more checks for base case(s)
2. some amount of local work
3. one or more recursive calls

Binary Search

2	3	5	11	17	23	29

1. if the range of elements is empty, return not-found sentinel

Binary Search

2	3	5	11	17	23	29

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3 :
2.1 the very middle element

Binary Search

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3 :
2.1 the very middle element
2.2 the elements to the left of middle

Binary Search

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3 :
2.1 the very middle element
2.2 the elements to the left of middle
2.3 the elements to the right of middle

Binary Search

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3 :
2.1 the very middle element
2.2 the elements to the left of middle
2.3 the elements to the right of middle
3. if the searched-for value is the middle element, you've found it and you're done

Binary Search

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3 :
2.1 the very middle element
2.2 the elements to the left of middle
2.3 the elements to the right of middle
3. if the searched-for value is the middle element, you've found it and you're done
4. else if the searched-for value is smaller than the middle element, repeat step 1 on the left half

Binary Search

1. if the range of elements is empty, return not-found sentinel
2. divide the range of elements to search into 3 :
2.1 the very middle element
2.2 the elements to the left of middle
2.3 the elements to the right of middle
3. if the searched-for value is the middle element, you've found it and you're done
4. else if the searched-for value is smaller than the middle element, repeat step 1 on the left half
5. else repeat step 1 on the right half

Binary Search

look at code

Binary Search Analysis

base case determination
line 5: 1 operation
line 6: 3 operations
local work
line 8: 3 operations
lines 9 and 13: 1 operation
line 11 or 15: 1 operation
total: 9 operations

Binary Search Analysis

- how many recursive calls?
- how big is the input for the recursive call?
- can the algorithm end early?

Binary Search Analysis

- how many recursive calls?
- either line 9 or line 13 , but never both
- therefore one recursive call
- how big is the input for the recursive call?
- can the algorithm end early?

Binary Search Analysis

- how many recursive calls?
- either line 9 or line 13 , but never both
- therefore one recursive call
- how big is the input for the recursive call?
- the size of the range is half the size of the original
- can the algorithm end early?

Binary Search Analysis

- how many recursive calls?
- either line 9 or line 13 , but never both
- therefore one recursive call
- how big is the input for the recursive call?
- the size of the range is half the size of the original
- can the algorithm end early?
- yes, because of line 19 return mid;

Binary Search Analysis

- running this algorithm thus involves
- \leq because the whole process might end early
- 9 operations of local work
- 1 recursive call on a range of size $\frac{n}{2}$

$$
T(n) \leq a T\left(\frac{n}{b}\right)+k n^{d}
$$

Binary Search Analysis

- running this algorithm thus involves
- \leq because the whole process might end early
- 9 operations of local work
- 1 recursive call ona range of size $\frac{n}{2}$

$$
T(n) \leq a T\left(\frac{n}{b}\right)+k n^{d}
$$

Binary Search Analysis

- running this algorithm thus involves
- \leq because the whole process might end early
- 9 operations of local work
- 1 recursive callona range of size $\frac{n}{2}$

$$
\begin{aligned}
T(n) & \leq a T\left(\frac{n}{b}\right)+k n^{d} \\
& \leq 1 T\left(\frac{n}{2}\right)+9 n^{0}
\end{aligned}
$$

Base Case

- what is the base case for binary search?

Base Case

- what is the base case for binary search?
- the size of the range is 0
- the comparison on line 6 fails
line 5: 1 operation
line 6: 3 operations
total: 4 operations
therefore, $T(0)=4$
- using $T(0)$ instead of $T(1)$, on page 379 , your textbook presents (using cancellation) this formula for $T(n)$:

$$
T(n)=a^{k} T(0)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

- in this case, we have $a=1, b=2, f(n)=9 n^{0}$, and $T(0)=4$
- we also know that $2^{k}=n$ which means $k=\log _{2} n$
- this gives

$$
\begin{aligned}
T(n) & =4 \cdot 1^{k}+\sum_{i=0}^{k-1} 1^{i} 9 \\
& =4+9 \log _{2} n
\end{aligned}
$$

Best Case

- what is the best case?
- we find the searched-for element at the very first spot we check
line 5: 1 operation
line 6: 3 operations
line 8: 3 operations
lines 9 and 13: 1 operation
- total: 8 operations

Complete Analysis

- putting it all together, for recursive binary search, we have
- best case: 8 operations
- worst case: $4+9 \log _{2} n$ opeations

