Regular Languages (Section 11.1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Regular Languages

- Problem: Suppose the input strings to a program must be strings over the alphabet {a, b} that contain exactly one substring bb. In other words, the strings must be of the form xbby, where x and y are strings over {a,b} that do not contain bb, x does not end in b, and y does not begin with b. Later we will see how to describe such strings formally.
- A regular language ove the alphabet A is a language constructed by the following rules:
 - \varnothing and $\{\Lambda\}$ are regular languages.
 - $\{a\}$ is a regular language for all $a \in A$.
 - If M and N are regular languages, then so are $M \cup N, MN$, and M^* .

An example

Example: Let $A = \{a, b\}$. Then the following languages are a sampling of the regular languages over A:

• \emptyset , { Λ }, {a}, {b}, {a, b}, {ab}, {ab}, {a}* = { Λ , a, aa, aaa, \ldots , a^n , \ldots }

Regular expressions

- A regular expression over alphabet A is an expression constructed by the following rules:
 - \varnothing and Λ are regular expressions.
 - *a* is a regular expression for all $a \in A$.
 - If R and S are regular expressions, then so are $(R), R + S, R \cdot S$, and R^* .

The hierarchy in the absence of parentheses is: * (do it first), \cdot , + (do it last). Juxtaposition will be used instead of \cdot .

• *Example:* Let $A = \{a, b\}$. Then the following expressions are a sampling of the regular expressions over A:

Regular expressions represent regular languages

Regular expressions represent regular languages by the following correspondence, where L(R) denotes the regular language of the expression R:

- $L(\emptyset) = \emptyset$
- $L(\Lambda) = \{\Lambda\}$
- $L(a) = \{a\}$ for all $a \in A$
- $L(R+S) = L(R) \cup L(S)$
- L(RS) = L(R)L(S)
- $L(R^*) = L(R)^*$

Regular expression example

Example: The regular expression $ab + a^*$ represents the following regular language:

$$L(ab + a^*) = L(ab) \cup L(a^*)$$

= $L(a)L(b) \cup L(a)^*$
= $\{a\}\{b\} \cup \{a\}^*$
= $\{ab\} \cup \{\Lambda, a, aa, aaa, \dots, a^n, \dots\}$
= $\{ab, \Lambda, a, aa, aaa, \dots, a^n, \dots\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Another example

Example: The regular expression $(a + b)^*$ represents the following regular language:

L((a + b)*) = (L(a + b))* = {a, b}*, the set of all possible strings over {a, b}.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Original Problem

Back to the problem: Suppose the input strings to a program must be strings over the alphabet {a, b} that contain exactly one substring bb. In other words, the strings must be of the form xbby, where x and y are strings over {a, b} that do not contain bb, x does not end in b, and y does not begin with b. How can we describe the set of inputs formally?

Original Problem

Back to the problem: Suppose the input strings to a program must be strings over the alphabet {a, b} that contain exactly one substring bb. In other words, the strings must be of the form xbby, where x and y are strings over {a, b} that do not contain bb, x does not end in b, and y does not begin with b. How can we describe the set of inputs formally?

• Solution: Let $x = (a + ba)^*$ and $y = (a + ab)^*$.

Original Problem

Back to the problem: Suppose the input strings to a program must be strings over the alphabet {a, b} that contain exactly one substring bb. In other words, the strings must be of the form xbby, where x and y are strings over {a, b} that do not contain bb, x does not end in b, and y does not begin with b. How can we describe the set of inputs formally?

- Solution: Let $x = (a + ba)^*$ and $y = (a + ab)^*$.
- So the entire answer is: $(a + ba)^*bb(a + ab)^*$

The Algebra of Regular Expressions

- Equality: Regular expressions R and S are equal, written R = S, when L(R) = L(S).
- Examples: a + b = b + a, a + a = a, $aa^* = a^*a$, $ab \neq ba$
- Properties of +, ·, and closure:
 - + is commutative, associative, \varnothing is identity for +, and R + R = R.

- \cdot is associative, Λ is identity for \cdot , and \varnothing is zero for \cdot .
- \cdot distributes over +

Simplification

Simplify the regular expression $aa(b^* + a) + a(ab^* + aa)$

$$aa(b^* + a) + a(ab^* + aa)$$

= $aa(b^* + a) + aa(b^* + a)$ · distributes over +
= $aa(b^* + a)$ $R + R = R$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Another Simplification

Show that $(a + aa)(a + b)^* = a(a + b)^*$

$$\begin{array}{ll} (a + aa)(a + b)^{*} \\ = (a + aa)a^{*}(ba^{*})^{*} & (R + S)^{*} = R^{*}(SR^{*})^{*} \\ = a(\Lambda + a)a^{*}(ba^{*})^{*} & R = R\Lambda \text{ and } \cdot \text{ dist over } + \\ = aa^{*}(ba^{*})^{*} & (\Lambda + R)R^{*} = R^{*} \\ = a(a + b)^{*} & (R + S)^{*} = R^{*}(SR^{*})^{*} \\ \text{QED} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?