The Church-Turing Thesis (Section 12.2)
The Church-Turing Thesis

- The **Church-Turing Thesis**: Anything that is intuitively computable can be computed by a Turing machine.
- It is a *thesis* rather than a theorem because it relates the informal notion of intuitively computable to the formal notion of a Turing machine.
Computational Models

• A *computational model* is a characterization of a computing process that describes the form of a program and describes how the instructions are executed.

• *Example*: The Turing machine computational model describes the form of TM instructions and how to execute them.

• *Example*: If X is a programming language, the X computational model describes the form of a program and how each instruction is executed.
Equivalence of Computational Models

- Two computational models are equivalent in power if they solve the same class of problems.
- Any piece of data for a program can be represented by a string of symbols and any string of symbols can be represented by a natural number.
- So, even though computational models may process different kinds of data, they can still be compared with respect to how they process natural numbers.
- We will briefly discuss a few models of computation that are equal in power to the TM model.
This imperative programming model processes natural numbers. The language is defined as follows:

- Variables have type \mathbb{N}.
- Assignment statements $X := 0; X := \text{succ}(Y); X := \text{pred}(Y)$; (assume $\text{pred}(0) = 0$)
- Composition of statements: $S_1; S_2$
- **while** $X \neq 0$ **do** S **od**

This simple language has the same power as the Turing machine model.

For input and output use the values of the variables before and after execution.
Define macros to demonstrate the power of the language:

\[
\begin{align*}
X &:= Y \\
X &:= 2 \\
Z &:= X + Y
\end{align*}
\]

\[
\begin{align*}
X &:= \text{succ}(Y); X := \text{pred}(X). \\
X &:= 0; X := \text{succ}(X); X := \text{succ}(X). \\
Z &:= X; C := Y; \textbf{while } C \neq 0 \textbf{ do} \\
&\quad Z := \text{succ}(Z); C := \text{pred}(C) \textbf{ od}
\end{align*}
\]
Other models

Other models that are discussed in Section 12.2 include:
- Partial recursive functions
- Markov algorithms
- Post algorithms
- Post Production systems

We’re not going to discuss these models.