Program Correctness (Section 8.1)
Program Correctness (for imperative programs)

- A theory of program correctness needs wffs, axioms, and inference rules. The wffs (called *Hoare triples*) are of the form: \(\{ P \} \ S \ \{ Q \} \) where \(S \) is a program statement and \(P \) (a precondition) and \(Q \) (a postcondition) are logical statements about the variables of \(S \).

- **Semantics:** The meaning of \(\{ P \} \ S \ \{ Q \} \) is the truth value of the statement:
 - If \(P \) is true before \(S \) executes, then \(Q \) is true after \(S \) halts.

- Note that it is assumed that \(S \) halts. If \(\{ P \} \ S \ \{ Q \} \) is true, then \(S \) is said to be *correct* with respect to (wrt) precondition \(P \) and postcondition \(Q \).
The Assignment Axiom (AA) is: \(\{ P(x/t) \} \ x := t \ \{ P \} \).

Example: \(\{ x = 4 \} \ x := x - 1 \ \{ x = 3 \} \)

Consequence Rules are

- \(\frac{P \rightarrow R \text{ and } \{ R \} S \{ Q \}}{\{ P \} S \{ Q \}} \)
- \(\frac{\{ P \} S \{ T \} \text{ and } T \rightarrow Q}{\{ P \} S \{ Q \}} \)
Prove the correctness of \(\{ x < 3 \} x := x - 1 \{ x < 3 \} \). Proof:

1. \(\{ x < 4 \} x := x - 1 \{ x < 3 \} \) \hspace{1cm} \text{AA}
2. \(x < 3 \) \hspace{1cm} \text{P [for \((x < 3) \rightarrow (x < 4) \)]}
3. \(x < 4 \) \hspace{1cm} 2, T
4. \((x < 3) \rightarrow (x < 4) \) \hspace{1cm} 2, 3, CP
5. \(\{ x < 3 \} x := x - 1 \{ x < 3 \} \) \hspace{1cm} 1, 4, Consequence. QED
Another Correctness Proof

Prove the correctness of
\[\{\exists x \ (y = 2x)\} y := y + 3 \{\exists x \ (y = 2x + 1)\} \].

1. \[\{\exists x \ (y + 3 = 2x + 1)\} y := y + 3 \{\exists x \ (y = 2x + 1)\} \]
 \[\{\exists x \ (y = 2x + 1)\}\]
 AA

2. \[\exists x \ (y = 2x) \]
 P [for CP]

3. \[y = 2c \]
 2,EI

4. \[(y = 2c) \rightarrow (y + 3 = 2c + 3) \]
 EE, where \[f(x) = x + 3 \]

5. \[y + 3 = 2c + 3 \]
 3,4,MP

6. \[y + 3 = 2(c + 1) + 1 \]
 5,T

7. \[\exists x \ (y + 3 = 2x + 1) \]
 6,EG

8. \[\exists x \ (y = 2x) \rightarrow \exists x \ (y + 3 = 2x + 1) \]
 2-7,CP

9. \[\{\exists x \ (y = 2x)\} y := y + 3 \{\exists x \ (y = 2x + 1)\} \]
 1,8,Consequence

QED
Composition Rule

Composition Rule is:

\[
\{P\}S_1\{Q\}\text{ and }\{Q\}S_2\{R\}
\]
\[
\{P\}S_1;S_2\{R\}
\]
Example proof

Prove the correctness of $\{x < 2\} y := 2x; x := y - 3\{x < 1\}$

1. $\{y - 3 < 1\} x := y - 3\{x < 1\}$
 AA
2. $\{2x - 3 < 1\} y := 2x\{y - 3 < 1\}$
 AA
3. $\{2x - 3 < 1\} y := 2x; x := y - 3\{x < 1\}$
 1,2,Composition
4. $x < 2$
5. $2x < 4$
6. $2x - 3 < 1$
7. $(x < 2) \rightarrow (2x - 3 < 1)$
8. $\{x < 2\} y := 2x; x := y - 3\{x < 1\}$
 3,7,Consequence
QED
If Rules

• **If-Then Rule:**

 \[
 \begin{align*}
 \{P \land C\} S \{Q\} \quad \text{and} \quad P \land \neg C &\rightarrow Q \\
 \{P\} \text{if } C \text{ then } S \{Q\}
 \end{align*}
 \]

• **If-Then-Else Rule:**

 \[
 \begin{align*}
 \{P \land C\} S_1 \{Q\} \quad \text{and} \quad \{P \land \neg C\} S_2 \{Q\} \\
 \{P\} \text{if } C \text{ then } S_1 \text{ else } S_2 \{Q\}
 \end{align*}
 \]
If proof

Prove the correctness of \(\{x > 0\} \text{if } x > 1 \text{ then } x := x - 1 \{x > 0\} \)

1. \(\{x - 1 > 0\} x := x - 1 \{x > 0\} \) .. AA
2. \((x > 0) \land (x > 1)\) ... P [for CP]
3. \(x > 1\) .. 2,Simp
4. \(x - 1 > 0\) .. 3,T
5. \((x > 0) \land (x > 1) \rightarrow (x - 1 > 0)\) 2-4,CP
6. \(\{(x > 0) \land (x > 1)\} x := x - 1 \{x > 0\}\) 1,5,Consequence
7. \((x > 0) \land \neg(x > 1)\) ... P [for CP]
8. \(x > 0\) .. 7,Simp
9. \((x > 0) \land \neg(x > 1) \rightarrow (x > 0)\) 7-8,CP
10. \(\{x > 0\} \text{if } x > 1 \text{ then } x := x - 1 \{x > 0\}\) 6,9,If-Then

QED
While rule

\[
\{P \land C\} S \{P\}
\]
\[
\{P\} \text{while } C \text{ do } S \{P \land \neg C\}
\]

- P is called a *loop invariant*
Additional issues

Two additional issues that the book investigates are: arrays and array indices, and loop termination.
This section is about Higher-Order Logic. This allows us to, for example, quantify over predicates, rather than just variables. We won’t study this idea.