
Deep Learning with Python Ch. 2



MNIST Example

• MNIST is a dataset of grayscale images of handwritten digits
(28 x 28 pixels) classified according to their 10 categories (0
through 9).

• It was gathered in the 1980s by the National Institute of
Standards and Technology. More or less the “hello world” of
deep learning.

• We will start out by looking at a keras implementation using a
Jupyter Notebook, so we can run the code. We will sort of
explain the code now, then go into more detail later.



Data representations for neural networks

• The MNIST example started with data stored in
multidimensional Numpy arrays, also called tensors. Pretty
much all current machine-learning systems use tensors as their
basic data structure.

• What is a tensor? Essentially it is a container for numbers. A
2D matrix is an example of a tensor.

• Scalars (0D tensors): a tensor containing only one number

• Vectors (1D tensors): an array of numbers. A 1D tensor has
exactly one axis. A vector with 5 elements is called
5-dimensional vector, but it is a 1D tensor.

• Matrices (2D tensors): an array of vectors. A matrix has two
axes (often usefully called rows and columns.



Tensor attributes

• If you pack matrices into a new array you get a 3D tensor.
Could be visualized as a cube or as an array of matrices. Of
course, if you put these 3D tensors into an array, you get a 4D
tensor, etc. . .

• The three key attributes that define a tensor are:
• numbers of axes (rank): called ndim in Python libraries such

as Numpy.
• shape: this is a tuple of integers that describes how many

dimensions the tensor has along each axis.
• data type: sometimes called dtype, The type of the data

contained in the tensor. Typically one of float32, uint8,
float64, . . . Maybe this will occasionally be char, but never
string, because it has to be of a fixed, pre-allocatable size.



Tensors in the MNIST example

• At the beginning of the example we loaded the training and
testing images and labels. train-images is the training data
and it has an ndim of 3. The shape of it is (60000, 28, 28)
because it has 60,000 images, each of size 28x28. Its dtype
attribute is uint8. Each matrix is a grayscale image with data
values between 0 and 255.



More on tensors

• You probably recall slices from Python. Well, they can be
used with tensors as well. So train-images[10:100] would give
you 90 images from the training data, so its shape would be
(90, 28, 28).

• Generally the 0th axis in a tensor will be the sample axis. For
example, in the MNIST example, each sample is the image of
a digit. Deep learning models usually break the data into what
are called batches. Again Python slices can be used to do this.



Real-world examples of data tensors

• Vector data: 2D tensors of shape (samples, features)

• Timeseries or sequence data: 3D tensors of shape
(samples, timesteps, features)

• Images: 4D tensors of shape (samples, height, width,
channels)

• Video: 5D tensors of shape (samples, frames, height, width,
channels)



Vector Data

• This is the most common kind of data. In such datasets a
single data point can be encoded as a vector, so a batch of
such data is a 2D tensor, i.e., an array of vectors.

• For example:
• An actuarial dataset of people, where we consider factors such

as age, zip code, income and such.
• A dataset of text documents, where we represent each

document by the counts of how many times each word appears
in it (out of dictionary of, say, the 20,000 most common
words).



Timeseries or sequence data

• Whenever time matters in the data (or the notion of a
sequence order) we can use a 3D tensor with an explicit time
axis.

• For example:
• A dataset of stock prices. Every minute (say) we store the

current price of the stock, as well as the highest and lowest
price in the past minute. Thus every minute is a 3D vector, an
entire day of trading is a 2D tensor of shape (390, 3) (there
are 390 minutes in a trading day) and 250 days worth of data
could be a 3D tensor of shape (250, 390, 3).

• A dataset of tweets, where we encode each tweet as a
sequence of 280 characters out of an alphabet of 128 unique
characters. Thus each character is encoded as a binary vector
of size 128 (all zeros except for a 1 at the index corresponding
to the character). Then each tweet can be encoded as a 2D
tensor of shape (280, 128) and a dataset of a million tweets
would have the shape (1000000, 280, 128).



Image data

• Images typically have three dimensions height, width, and
color depth. Although grayscale images (such as our MNIST
data) only have a single color channel, by convention images
are usually 3D tensors with a 1 dimensional color channel for
grayscale images. A batch of 128 grayscale images of size
256x256 could be stored in a tensor of shape (128, 256, 256,
1), while the same images in color would have the shape (128,
256, 256, 3).



Video data

• Videos are one of the few types of real-world data that require
5D tensors. A video can be understood as a sequence of
frames with each frame being a color image. Each frame can
be stored in a 3D tensor (height, width, color-depth), a
sequence of frames can be stored in a 4D tensor (frames,
height, width, color-depth) and thus a batch of different
videos can be stored in a 5D tensor of shape (samples, frames,
height, width, color-depth). In practice this is unwieldy and
formats such as MPEG do significant compression.


