Deep Learning with Python Ch. 2 Part 2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tensor Operations

Just as computer programs are reduced to a small set of binary operations (AND, OR, NOT, . . .) the transformations learned by neural networks can be reduced to a handful of *tensor operations* applied to tensors of numeric data.

In the MNIST example the network was built by stacking *Dense* layers on top of each other. One of the *keras* layers looks like:

```
keras.layers.Dense(512, activation='relu')
```

This layer can be interpreted as a function that takes a 2D tensor as input and returns another 2D tensor, a new way of representing the input tensor. Specifically what this is doing is something like:

```
output = relu(dot(W, input) + b)
```

Element-wise operations

• The *relu* (rectified linear unit) operation and addition are element-wise operations that are applied independently to each entry in the tensors being considered. This means that these operations are highly parallelizable.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• A naive Python implementation of *relu* would look like:

```
def naive-relu(x):
    assert len(x.shape) == 2
    x = x.copy()
    for i in range(x.shape[0]):
        for j in range(x.shape[1]):
            x[i,j] = max(x[i,j], 0)
    return x
```

Element-wise ops continued

• Similarly addition looks like:

```
def naive-add(x,y):
    assert len(x.shape) == 2
    assert x.shape == y.shape
```

```
x = x.copy()
for i in range(x.shape[0]):
    for j in range(x.shape[1]):
        x[i,j] += y[i,j]
return x
```

 Of course, in practice there are incredibly efficient Numpy implementations of these operations already and you would just do:

```
\begin{array}{l} \textbf{import} & numpy \ \text{as} & np \\ z \ = \ x \ + \ y \\ z \ = \ np \ . \ \text{maximum} (z \ , 0) \end{array}
```

Tensor dot

- The dot operation, also called a *tensor product* (not to be confused with an element-wise product) is the most common, most useful tensor operation. Contrary to element-wise operations, it combines entries in the input tensors.
- An element-wise product is done with the * operator in Numpy. The dot operation is done using the dot operator:

import numpy as np
z = np.dot(x,y)

Tensor dot continued

• So, what does the dot operation do? Let's start with the dot product of two vectors x and y. It is:

```
def naive-vector-dot(x,y):
    assert len(x.shape) == 1
    assert len(y.shape) == 1
    assert x.shape[0] == y.shape[0]
    z = 0
    for i in range(x.shape[0]):
        z += x[i] * y[i]
    return z
```

So, the result is a scalar and that only vectors with the same number of elements are compatible with dot product.

Tensor dot yet again

• You can also take the dot product between a matrix x and a vector y, which returns a vector where the elements are the dot products between y and the rows of x. As follows:

Notice that dot is no longer symmetric, dot(x,y) isn't the same as dot(y,x).

Matrix tensor dot

 The most common form of tensor dot is probably the product between two matrices. You can take the dot product of two matrices x and y if and only if x.shape[1] == y.shape[0]. The result is a matrix with shape (x.shape[0],y.shape[1]) where the elements are the vector products between the rows of x and the columns of y. As follows:

Tensor reshaping

• Another important tensor operation is *tensor reshaping*. It wasn't used in the *Dense* layers in the MNIST example, but it was used in the pre-processing of the data.

```
train - images =
train - images.reshape((60000, 28*28))
```

- Reshaping means rearranging its rows and columns to match a target shape. Naturally the reshaped tensor has the same total number of elements as the original. It just adjusts how they are spread around rows and columns.
- One common use for of reshaping is transposing, which just swaps rows and columns of a matrix.

Geometric interpretation

- Because the contents of tensors manipulated by tensor operations can be interpreted as points in a geometric space, all tensor operations have a geometric interpretation. Addition of vectors is a kind of straightforward example.
- So neural networks consist entirely of chains of tensor operations and all of these tensor operations are just geometric transformations of input data. It follows that you can interpret a neural network as a very complex geometric transformation in high dimensional space, implemented as a series of relatively simple steps.
- A 3D mental image may be helpful here. Imagine two sheets of paper, one red and one blue, crumpled up into a ball. That crumpled paper is your input data. Distinguishing the two sheets is a classification problem. So, it analogizes to the steps required to uncrumple the ball and separate the two pieces of paper.