
Deep Learning with Python Ch. 2 Part 2



Tensor Operations

Just as computer programs are reduced to a small set of binary
operations (AND, OR, NOT, . . .) the transformations learned by
neural networks can be reduced to a handful of tensor operations
applied to tensors of numeric data.
In the MNIST example the network was built by stacking Dense
layers on top of each other. One of the keras layers looks like:

k e r a s . l a y e r s . Dense (512 , a c t i v a t i o n= ’ r e l u ’ )

This layer can be interpreted as a function that takes a 2D tensor
as input and returns another 2D tensor, a new way of representing
the input tensor. Specifically what this is doing is something like:

output = r e l u ( dot (W, input ) + b )



Element-wise operations

• The relu (rectified linear unit) operation and addition are
element-wise operations that are applied independently to
each entry in the tensors being considered. This means that
these operations are highly parallelizable.

• A naive Python implementation of relu would look like:

def n a i v e−r e l u ( x ) :
a s s e r t l en ( x . shape ) == 2

x = x . copy ( )
f o r i i n range ( x . shape [ 0 ] ) :

f o r j i n range ( x . shape [ 1 ] ) :
x [ i , j ] = max( x [ i , j ] , 0)

return x



Element-wise ops continued
• Similarly addition looks like:

def n a i v e−add ( x , y ) :
a s s e r t l en ( x . shape ) == 2
a s s e r t x . shape == y . shape

x = x . copy ( )
f o r i i n range ( x . shape [ 0 ] ) :

f o r j i n range ( x . shape [ 1 ] ) :
x [ i , j ] += y [ i , j ]

return x

• Of course, in practice there are incredibly efficient Numpy
implementations of these operations already and you would
just do:

import numpy as np
z = x + y
z = np . maximum ( z , 0 )



Tensor dot

• The dot operation, also called a tensor product (not to be
confused with an element-wise product) is the most common,
most useful tensor operation. Contrary to element-wise
operations, it combines entries in the input tensors.

• An element-wise product is done with the * operator in
Numpy. The dot operation is done using the dot operator:

import numpy as np
z = np . dot ( x , y )



Tensor dot continued

• So, what does the dot operation do? Let’s start with the dot
product of two vectors x and y . It is:

def n a i v e−v e c t o r−dot ( x , y ) :
a s s e r t l en ( x . shape ) == 1
a s s e r t l en ( y . shape ) == 1
a s s e r t x . shape [ 0 ] == y . shape [ 0 ]

z = 0
f o r i i n range ( x . shape [ 0 ] ) :

z += x [ i ] ∗ y [ i ]
return z

So, the result is a scalar and that only vectors with the same
number of elements are compatible with dot product.



Tensor dot yet again

• You can also take the dot product between a matrix x and a
vector y, which returns a vector where the elements are the
dot products between y and the rows of x. As follows:

def n a i v e−matr ix−v e c t o r−dot ( x , y ) :
a s s e r t l en ( x . shape ) == 2
a s s e r t l en ( y . shape ) == 1
a s s e r t x . shape [ 1 ] == y . shape [ 0 ]

z = np . z e r o s ( x . shape [ 0 ] )
f o r i i n range ( x . shape [ 0 ] ) :

f o r j i n range ( x . shape [ 1 ] ) :
z [ i ] += x [ i , j ] ∗ y [ j ]

return z

Notice that dot is no longer symmetric, dot(x,y) isn’t the
same as dot(y,x).



Matrix tensor dot
• The most common form of tensor dot is probably the product

between two matrices. You can take the dot product of two
matrices x and y if and only if x.shape[1] == y.shape[0]. The
result is a matrix with shape (x.shape[0],y.shape[1]) where the
elements are the vector products between the rows of x and
the columns of y . As follows:

def n a i v e−matr ix−dot ( x , y ) :
a s s e r t l en ( x . shape ) == 2
a s s e r t l en ( y . shape ) == 2
a s s e r t x . shape [ 1 ] == y . shape [ 0 ]
z = np . z e r o s ( x . shape [ 0 ] , y . shape [ 1 ] )
f o r i i n range ( x . shape [ 0 ] ) :

f o r j i n range ( y . shape [ 1 ] ) :
row−x = x [ i , : ]
c o l−y = y [ : , j ]
z [ i , j ] = n a i v e−v e c t o r−dot ( row−x , c o l−y )

return z



Tensor reshaping

• Another important tensor operation is tensor reshaping. It
wasn’t used in the Dense layers in the MNIST example, but it
was used in the pre-processing of the data.

t r a i n −images =
t r a i n −images . r e s h a p e ( ( 6 0 0 0 0 , 28∗28))

• Reshaping means rearranging its rows and columns to match
a target shape. Naturally the reshaped tensor has the same
total number of elements as the original. It just adjusts how
they are spread around rows and columns.

• One common use for of reshaping is transposing, which just
swaps rows and columns of a matrix.



Geometric interpretation
• Because the contents of tensors manipulated by tensor

operations can be interpreted as points in a geometric space,
all tensor operations have a geometric interpretation. Addition
of vectors is a kind of straightforward example.

• So neural networks consist entirely of chains of tensor
operations and all of these tensor operations are just
geometric transformations of input data. It follows that you
can interpret a neural network as a very complex geometric
transformation in high dimensional space, implemented as a
series of relatively simple steps.

• A 3D mental image may be helpful here. Imagine two sheets
of paper, one red and one blue, crumpled up into a ball. That
crumpled paper is your input data. Distinguishing the two
sheets is a classification problem. So, it analogizes to the
steps required to uncrumple the ball and separate the two
pieces of paper.


