
Deep Learning with Python Ch. 2 Part 3



The engine of neural networks

• As we saw in the previous slides, each neural layer from
MNIST transforms its input layer as follows:

output = r e l u ( dot (W, input ) + b )

In this expression W and b are tensors that are attributes of
the layer. They are the weights or trainable parameters of the
layer (the kernel and bias attributes respectively). This is
what gets learned by the network from the training data.

• Initially these tensors are filled with small random values. So
at first the network will produce gibberish. But this is a
starting point. Then the weights are adjusted based on
feedback. This gradual adjustment (called training) is what
neural network learning is all about.



The training loop

The learning happens within a training loop that runs the following
loop as long as necessary

1. Choose a batch of training examples x and corresponding
targets y .

2. Run the network on x (called the forward pass) to obtain
predictions y pred .

3. Compute the loss of the network on the batch, a measure of
the difference between y and y pred .

4. Update all the weights of the network in a way that slightly
reduces the loss of the batch.

Eventually we end up with a network with very low loss on the
training examples. From afar this seems like magic, but up close it
just consists of elementary steps.



Details of steps

• Step 1 is just I/O code. Steps 2 and 3 involve the application
of a small number of tensor operations of the sort that we saw
in the previous slides. The difficult part is Step 4, updating
the network weights.

• We could try systematically considering different values for
different weights to see what reduces the loss the most, but
that would be extremely inefficient.

• Instead we will take advantage of the fact that all operations
used in the network are differentiable and compute the
gradient of the loss with regard to the networks values. We
can then move the coefficients in the opposite direction of the
gradient, thus decreasing the loss.



Gradients

• A gradient is the derivative of a tensor operation. It is the
generalization of the concept of derivative to functions of
multidimensional inputs, that is, to functions that take tensors
as inputs.

• It is theoretically possible to find the minimums of a function
(the places where its derivative is 0), then find the one of
these where the function has the lowest value. This would
give us the best weights immediately. But this is
computationally intractable for the number of weights that
neural networks have. Instead we do what is called stochastic
gradient descent to gradually move toward the minimum loss.

• To elaborate a bit, Step 4 of our loop becomes:
• Compute the gradient of the loss with regard to the network’s

parameters (a backward pass)
• Move the parameters a little bit in the opposite direction from

the gradient, reducing the loss on the batch a bit.



Summary so far

• The elaborated algorithm is called mini-batch stochastic
gradient descent (aka mini-batch SGD). Stochastic just means
random and it is because the batches are chosen randomly.

• One issue is what is called the step size which is how much
you adjust the weights in any one step.

• Another issue is how big your batch sizes are. If you use all
the training data in each pass, then you get more accurate
results, but it is very inefficient. If you have batch sizes of
one, it takes a very long time to converge.



Backpropagation

• So far we have just assumed that combinations of our tensor
functions are differentiable. In fact, since a neural network
function consists of many tensor functions chained together,
calculating the derivative requires the use of the chain rule.
This is exactly what is required to update the weights. The
resulting algorithm is called backpropagation (or reverse-mode
differentiation) and works backward, using the chain rule, to
compute the contribution of each parameter to the loss value.

• Tools such as TensorFlow are capable of symbolic
differentiation and are able to compute the required gradient
function from the chain of tensor functions automatically. So
there is no reason to implement backpropagation by hand.


