
Deep Learning with Python Ch. 4 Workflow



The universal workflow of machine learning

• Defining the problem and assembling a dataset
• What will your input be? What are you trying to predict?
• You can only learn to predict something if you have available

training data (unless you have the resources to pay people to
collect data for you, sometimes this takes the form of graduate
students).

• What variety is your problem? binary classification? multiclass
classification? scalar regression? vector regression? something
else?

• (often implicit) Hypothesis: Your outputs can be predicted
given your inputs, meaning that your data is sufficiently
informative to allow learning.



Reasons a problem might not be solvable

• Truly inadequate data: If all you have are the first names of
all the students in a Truman class and want to predict their
final grades, you are destined to fail.

• Non-stationary problems: You want to build a
recommendation system for clothing and you are training on
data from August. This is unlikely to successfully predict
clothing purchases in January.



Choosing a measure of success

• You need to define what counts as success. Your metric will
guide the choice of your loss function. It should align with the
higher level goals you are trying to achieve.

• Possibilities include:
• accuracy especially where every possible answer is roughly

equally likely
• precision and recall especially for class-imbalanced problems
• mean average precision for ranking problems or multi-label

classification
• your own metric you may need to define your own custom

metric for some problems



Choosing an evaluation protocol

• a hold-out validation set: Most of the examples are looking at
do this. It is probably the best choice when you have ample
amounts of data.

• k-fold cross-validation: We won’t go into this in detail, but
this and the next choice are ways to accommodate when you
don’t have enough data.

• iterated k-fold validation: Produces highly accurate model
evaluation with little data.



Preparing your data

• Once you know what you’re training on, what you’re
optimizing for and how to evaluate your approach, the next
step is to format your data in a way that facilitates machine
learning.

• Your data should be in the form of tensors.
• The values in these tensors should be scaled to small values,

for example in the [-1,1] range or the [0,1] range.
• If you have heterogeneous data values, then they should be

normalized.
• You may want to do some feature engineering for smaller data

problems.



Developing a model that is better than random

• Your goal is to achieve statistical power, that is to develop a
model that does better than random, for example, more than
10% accuracy for MNIST or more than 50% accuracy for the
IMDB problem.

• If you fail in your attempt to do this, then the initial
hypothesis that the output can be derived from the input is
probably not true. You need to start over.



Building your layers

• To build your first working model you need to make three key
choices:

• last-layer activation: establishes constraints on the output. For
example, IMDB used sigmoid in the last layer, MNIST used
softmax.

• loss function: needs to match the kind of problem you are
solving, e.g., binary crossentropy for IMDB and mse for the
regression example

• optimization configuration: what optimizer will you use? for
our purposes, the answer is pretty much always rmsprop with
its default learning rate.



Scaling up

• Once you have a model with statistical power, you need to
confirm that your model is sufficiently powerful. Keep adding
layers, adding parameters, and increasing the number of
epochs until it starts to overfit. You need to monitor both the
training loss and validation loss to do this.



Tuning your hyperparameters

• This step usually takes the most time. Once you know you
have enough power to overfit, tweak your model repeatedly
(using the validation data, not the testing data) to optimize
performance.

• Do things such as:
• Add dropout
• Try to add or remove layers
• Add L1 and L2 regularization.
• Refine other hyperparameters such as, number of units per

layer or the learning rate of the optimizer.


