
Deep Learning with Python Ch. 8 Computer
Vision



Deep Learning for Image Processing

• First big success area for deep learning. Started winning
competitions about 10 years ago.

• We can see the improvement on the MNIST problem.



Key is Convolutional Networks

• Convolutional networks (convnets) are what makes image
processing work so well.

• Look at the MNIST example. . .

• Notice the mixing of conv2D layers with MaxPooling layers.
At the end we see flatten, followed by one dense classifier
layer of the form we are familiar with. Soon we will explain
what these layers are doing.

• Notice at the end the accuracy on the test data is 99.1
percent, which is a significant improvement over what we saw
before.



Convolution

• The big difference between a densely connected layer and a
convolution layer is that the Dense layers learn global patterns
in the input feature space, whereas the convolution layers
learn local patterns in small 2D windows of the inputs. (See
figure 8.1)

• Key characteristics:
• The patterns they learn are translation-invariant. When a

pattern is learned in the lower right corner, it can later be
recognized in the upper left corner.

• They can learn spatial hierarchies of patterns. First they can
learn small local patterns, such as edges, then another layer can
learn largers patterns made from features of the previous layer.

• See cat example.



Feature maps

• Convolutions operate over rank-3 tensors called feature maps
with two spatial axes (width and height) and a depth axis.
For an RGB image the depth access can have dimension 3,
representing the three color channels. For the black-and-white
MNIST images the depth is 1 (gray scale).

• Figure 8.3 shows an example of what a filter might recognize.

• Convolutions are defined by the size of the patches extracted
from the input (typically 3x3 or 5x5) and by the depth of the
output feature map, which is the number of filters computed
by the convolution. Our MNIST example started with a depth
of 32 and ended with a depth of 64.



more Feature maps

• A convolution works by sliding these windows of size 3x3 (say)
over the 3D input feature map, stopping at every possible
location and extracting the 3D patch of surrounding features.
Each such 3D patch is then transformed into a 1D vector of
shape (output depth) which is done via a tensor product with
a learned weight matrix (called the convolution kernel). This
same kernel is used across every patch. All of these vectors
are then reassembled into a 3D output map of shape (height,
width, output depth). Positions on the map correspond to
positions in the input.

• Figure 8.4 shows a picture.



Border effects

• If you think about sliding a 3x3 patch over, say, a 5x5 feature
map, there are only 9 tiles around which you can center a 3x3
window. So your output feature map shrinks by exactly two
tiles along each dimension. This happened in our MNIST
example when the 28x28 input dropped to 26x26 after the
first convolution layer.

• If you want to avoid this, you can use padding. The book has
pictures if you are interested.



Strides

• Another factor that can influence output size are strides. So
far our stride has just been 1. The centers of convolution
windows have been assumed to be contiguous. But they don’t
have to be. Figure 8.7 shows what a stride of 2 looks like.
Note that this has the effect of downsampling the data by a
factor of 2 (apart from border effects).



Max-pooling operation

• The purpose of the max-pooling layers are to aggressively
downsample features maps (much like strides do).
Max-pooling consists of extracting windows from the input
feature maps and outputting the max value of each channel.
This is similar to convolution, except instead of transforming
local patches using a learned linear transformation, they’re
transformed via a hardcoded max tensor operation.
Max-pooling is usually done with a 2x2 window and a stride of
2, which downsamples the feature map by a factor of 2.



Why use max-pooling?

• Leaving out the max-pooling layers results in a network that
isn’t conducive to learning a spatial hierarchy of features. The
deeper layers will still be working with the same small
windows of the initial input. Imagine trying to recognize a
digit with only a small window of it visible at any one time.

• The other big reason is that max-pooling reduces the size of
the final feature map. Otherwise it would be huge, with many,
many weights, which will almost definitely result in overfitting.



Summary so far

• At this point we have covered the basics of convnets: feature
maps, convolution, and max pooling. We looked at how to
build a small convnet to classify MNIST digits.



Training a convnet on a small dataset

• This is a great example, involving dogs and cats, just doing a
binary classification, identifying each picture as containing a
dog or a cat.

• Unfortunately, despite ridiculous amounts of effort, I was
unable to get this data to load from Kaggle. As near as I can
tell, at least part of the issue is that I’m using a Windows
machine.

• So we will look at the results in the book but not be able to
run them ourselves. I hope you have better luck if you try to
use Kaggle data in your projects.



Building the model

• Look at cat and dog pictures. Aw. Cute.

• The model is quite similar to the one we looked at for
MNIST, except bigger, because the images are bigger and
they are in color.

• There is a bunch of data pre-processing necessary, including
decoding the JPGs into RGB grids of pixels, converting the
pixel data into floating-point (0 to 1) tensors, resizing them to
be 180x180, and packing them into batches.

• The book takes you through the details.

• For this problem, the result is batches of 32 180x180x3 data.



Initial results

• Figure 8.9 shows the training and validation metrics for the
initial configuration.

• They show significant overfitting pretty quickly and about 70
percent accuracy at best. The test data gets an accuracy of
69.5 percent when stopped. Note that, for a binary problem
like this, the base expectation is 50 percent. So this is better
than nothing.



Data augmentation

• Data augmentation is the approach of generating more
training data from existing training samples by augmenting
the samples via a number of random transformations that
yield believable-looking images. So your model will see more
plausible samples without just being exposed to the same
sample repeatedly.

• In Keras this can be done by adding data augmentation layers
at the start of the model as in Listing 8.14. These include:

• Random flip (horizontal)
• Random rotation
• Random zoom

• Figure 8.10 shows examples



One more thing

• One last thing about random image augmentation is that, just
like Dropout, they are inactive during actual inference
(meaning prediction or testing on the actual test data).



New model

• The next model includes image augmentation and dropout.
We expect overfitting to start later, so we will go for more
epochs.

• Figure 8.11 shows the results. Now the validation accuracy is
up to the 80-85 percent range. The test accuracy is 83.5
percent, quite an improvement.

• Additional improvements might be possible by adjusting the
number of filters per convolution layer or the number of layers
in the model, but it would be difficult to get much above 90
percent.



Leveraging a pretrained model

• One really interesting idea that has become a big deal in the
deep learning world is using a pretrained model. A pretrained
model is a model that was previously trained on a large
dataset, typically a large-scale image classification task.

• If this original dataset is large enough and general enough, the
spatial hierarchy of features learned by the pretrained model
can effectively act as a generic model of the visual world.

• So the same feature detectors can be useful for many different
computer vision problems, even those involving completely
different classes than the original task.



ImageNet

• One huge dataset that some of these pretrained models are
pretrained on is ImageNet, which is a dataset containing
animals and everyday objects. Models pretrained on this data
can be useful for lots of new problems.

• This portability of learned features across different problems is
a key advantage of deep learning compared to many older,
shallow learning approaches.

• It is especially helpful for small-data problems like the one we
are looking at.



Pretrained models

• The book example uses a model called VGG16, but it
mentions a bunch of other models. VGG16 dates from 2014,
so it is old and out of date, but apparently useful for
illustrative purposes.

• There are two ways (at least) to use pretrained models:
feature extraction and fine-tuning.



Feature extraction

• Feature extraction consists of using the representations
learned by a previously trained model to extract interesting
features from new samples. These features are then run
through a new classifier, which is trained from scratch.

• So we take the convolutional base (the conv and pooling
layers) from the pretrained model, run the data through it
(without updating the weights), then train a new classifier
with the results.

• Could we reuse the classifier? No, not very well. Generally
what is learned by the convolutional base is generic, but the
classifier learns things specific to its training dataset.



more details

• Note that early layers in the convolutional base are likely to be
learning truly generic features, such as visual edges, colors and
textures, while those coming later are more likely to learn
more abstract concepts such as “cat ear” or “dog eye”. So if
your new dataset differs a lot from the original, then you may
only want the first few layers of the convolutional base.

• For the particular example we are looking at, ImageNet
contains many cat and dog pictures (along with lots of other
things) so VGG16 will probably be helpful, using all of its
layers.



even more details

• The book goes through two different ways to do this
experiment. One involves running the VGG16 pretrained
system once on each image, saving the data in Numpy arrays,
then using those to input to the Dense classifier level in our
model. But this precludes doing data augmentation.

• The alternative is to hook everything together, which is more
expensive, but more flexible and allows data augmentation.

• Figure 8.13 shows the results for the first approach. It
achieves about 97 percent accuracy, an improvement.

• The second approach involves freezing the weights in the
pretrained model, so that they don’t get changed as the
Dense models (on both ends, for augmentation and for
classification) are learning. Figure 8.14 shows the results for
this approach, which achieve over 98 percent accuracy.



Fine-tuning

• Fine-tuning involves retraining some of the pretrained layers
to let them adapt to the potentially different abstractions in
the new dataset. It involves unfreezing a few of the frozen
layers from the pretrained model after everything else is
trained. It uses a very low learning rate to very slightly modify
these weights. For the author, this results in 98.5 percent
accuracy, which would have been near the top of the original
competition.

• But the pretrained systems weren’t available to the original
competitors, so that isn’t quite a fair comparison. But this
system learned with 2000 training examples, instead of the
20,000 available to the original competitors. The big idea here
is that pretrained models allow us to build new systems with
relatively small amounts of data.


