NEURAL NETWORKS: A BRIEF INTRODUCTION

SECTION 21.1

Section 21.1 1

Outline

> Brains

> Neural networks

> Perceptrons

> Multilayer perceptrons

> Applications of neural networks

Section 21.1 2

Brains

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains’ of electrical potential

Axonal arborization

\ Axon from another cell

Synapse

Dendrite

\/

Synapses

Cell body or Soma

Section 21.1

McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:
ai < g(in;) = g (2;W;,a;)

| Bias Weight
0= Wo a;= g(in;)

Input Input Activation Outout
Links Function Function p Links

Output

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do

Section 21.1

Activation functions

g(in;) A g(in;)

. .
in,- in,-

(a) (b)

(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 4 ¢ ")

Changing the bias weight 11/); moves the threshold location

Section 21.1

Implementing logical functions

WO =1.5 WO = 0.5 WO =-0.5
W= T W o T
/ /
W,=1 W,=1
AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented

Section 21.1

Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (11, ; = W/, ;)
g(x)=sign(xz), a; = + 1, holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.

Section 21.1

Feed-forward example

Wau

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss-as+ Wys-ay)

= gWs5-gWis-a1+Was-as) +Wis-g(Wiyg-ar+Way-ag))

Adjusting weights changes the function: do learning this way!

Section 21.1

8

Single-layer perceptrons

Input
Units

i

Output
Units

Perceptron output
1 -
0.8 1
0.6 -
04 A
0.2 A

”’
i

7/
i
11’/’/’/////////

Output units all operate separately—no shared weights

W
Iz
mr

1 Y

)/
)
,t/t,f/,,”/,f/

77

%
1
/////

Adjusting weights moves the location, orientation, and steepness of cliff

Section 21.1

Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

Z]-Wjajj >0 or W-x>0

X1y X1y X1)
I O ® l @ @ |l @ O
?
00O O— 0 0 0——me@—
0 I X 0 I X 0 I X
(a) x; and x, (b) x; of X () xq xor x,

Minsky & Papert (1969) pricked the neural network balloon

Section 21.1 10

Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output vy is

1 1
E = éETTQ = é(y — hW(X))2 :

Perform optimization search by gradient descent:

o) B OErr T 0
= FErr = Err
oW oW oW

= —FErr x ¢'(in) X x;

Simple weight update rule:
Wi« W+ ax Err x ¢'(in) X x;

E.g., +ve error = increase network output

= increase weights on +ve inputs, decrease on -ve inputs

(y — g _Wixy))

Section 21.1

11

Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set

Perceptron ——

© ©

» »
2009 2009
e e
208 208
3 3

é 0.7 - (é 0.7
2 0.6 / Perceptron —— 2 0.6
R O
20.5 1 go 5
S 0.4 ©04
o

Training set size - MAJORITY on 11 inputs Training set size -

Perceptron learns majority function easily, DTL is hopeless

0 10 20 30 40 50 60 70 80 90100 & 0 10 20 30 40 50 60 70 80 90 100

RESTAURANT data

DTL learns restaurant function easily, perceptron cannot represent it

Section 21.1 12

Multilayer perceptrons

Layers are usually fully connected;

numbers of hidden units typically chosen by hand

N/
N /
WAL
OEX umﬁﬁ
N 4 e, N\
RO
O Mw ooww’
VSR
RSN
A

a;
‘/‘6..

Output units

Hidden units

2
S

Input units

13

Section 21.1

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

i
///Z/fl/,”/’/

/:LZ//W”/://’”/////
i,
), /////// ///7/”/;/
/ ////,

W
/////// ,/
i, 7

g
1

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)

Section 21.1

14

Back-propagation learning

Output layer: same as for single-layer perceptron,
Wii< Wii+axa; x A

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
Aj=gling) S Wil

Update rule for weights in hidden layer:
Wi Wi+axa,xAj.

(Most neuroscientists deny that back-propagation occurs in the brain)

Section 21.1 15

Back-propagation derivation

The squared error on a single example is defined as

1
E=_%(yi—a),
270
where the sum is over the nodes in the output layer.
oOF da, dg(in;)
oWy (v a@)awm = W) oW
= —(yi — ai)gl(mi)@Wj’i = —(y; — ay;)Q/(mi)m (? Wj,iaj)

- —<y7; - ai>g/<in7ﬁ)aj - —CLJA?;

Section 21.1 16

Back-propagation derivation contd.

ok

oWy

B Oa; dg(in;)
- %(yz — a,L)aW]{;’j — %(% CL'L) aWk,j
.. 0in,

= —>(y; — a;)g (zni)aWk | ZA O, (Z Wi Zaj)
! J J
Oa, 8g(m)
= —S AW, S AW —2
AW, = R AW
din
= =S AW, <m3)0W/j-
7]
0
= — > AW;ig'(ing) ST (Z Wi]ak)
! J

= — S AW;ig' (inj)ar, = —apA;

Section 21.1

17

Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit

[e —
o

o N B~ OO O O DD

Total error on training set

—_—

0O 50 100 150 200 250 300 350 400
Number of epochs

Typical problems: slow convergence, local minima

Section 21.1

18

Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:

1,
0.9
0.8

o
~

correct on test set

c 0.6 - Decision tree

0 10 20 30 40 50 60 70 80 90 100
Training set size - RESTAURANT data

MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily

Section 21.1

19

Handwritten digit recognition

O/ |HIM|s5| |78
20010721406 7|%

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

A |

Current best (kernel machines, vision algorithms) =~ 0.6% error

Section 21.1 20

Summary

Most brains have lots of neurons; each neuron == linear—threshold unit (?7)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged

Section 21.1 21

