NEURAL NETWORKS: A BRIEF INTRODUCTION
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Brains

10" neurons of > 20 types, 10'* synapses, 1ms—10ms cycle time
Signals are noisy “spike trains’ of electrical potential

Axonal arborization

\ Axon from another cell
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McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:
ai < g(in;) = g (2;W;,a;)

| Bias Weight
0= Wo a;= g(in;)

Input Input  Activation Outout
Links Function Function p Links

Output

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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Activation functions

g(in;) A g(in;)

. .
in,- in,-

(a) (b)

(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 4 ¢ ")

Changing the bias weight 11/); moves the threshold location
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Implementing logical functions

WO =1.5 WO = 0.5 WO =-0.5
W= T W o T
/ /
W,=1 W,=1
AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented
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Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (11, ; = W/, ;)
g(x)=sign(xz), a; = + 1, holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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Feed-forward example

Wau

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss-as+ Wys-ay)

= gWs5-gWis-a1+Was-as) +Wis-g(Wiyg-ar+Way-ag))

Adjusting weights changes the function: do learning this way!
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Single-layer perceptrons
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Adjusting weights moves the location, orientation, and steepness of cliff
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Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR
Represents a linear separator in input space:

Z]-Wjajj >0 or W-x>0

X1y X1y X1 )
I O ® l @ @ |l @ O
?
00O O— 0 0 0——me@—
0 I X 0 I X 0 I X
(a) x; and x, (b) x; of X () xq xor x,

Minsky & Papert (1969) pricked the neural network balloon
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Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output vy is

1 1
E = éETTQ = é(y — hW(X))2 :

Perform optimization search by gradient descent:

o) B OErr T 0
= FErr = Err
oW oW oW

= —FErr x ¢'(in) X x;

Simple weight update rule:
Wi« W+ ax Err x ¢'(in) X x;

E.g., +ve error = increase network output

= increase weights on +ve inputs, decrease on -ve inputs

(y — g _Wixy))
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Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Perceptron learns majority function easily, DTL is hopeless
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RESTAURANT data

DTL learns restaurant function easily, perceptron cannot represent it
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Multilayer perceptrons

Layers are usually fully connected;

numbers of hidden units typically chosen by hand
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Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers
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Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)
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Back-propagation learning

Output layer: same as for single-layer perceptron,
Wii< Wii+axa; x A

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
Aj=gling) S Wil

Update rule for weights in hidden layer:
Wi Wi+axa,xAj.

(Most neuroscientists deny that back-propagation occurs in the brain)
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Back-propagation derivation

The squared error on a single example is defined as

1
E=_%(yi—a),
270
where the sum is over the nodes in the output layer.
oOF da, dg(in;)
oWy (v a@)awm = W) oW
= —(yi — ai)gl(mi)@Wj’i = —(y; — ay;)Q/(mi)m (? Wj,iaj)

- —<y7; - ai>g/<in7ﬁ)aj - —CLJA?;
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Back-propagation derivation contd.
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Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit
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Typical problems: slow convergence, local minima
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Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:
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c 0.6 - Decision tree
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MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily
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Handwritten digit recognition

O/ |HIM|s5| |78
20010721406 7|%

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

A |

Current best (kernel machines, vision algorithms) =~ 0.6% error

Section 21.1 20




Summary

Most brains have lots of neurons; each neuron == linear—threshold unit (?7)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged
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